如圖,拋物線y=-x2+2mx+m+2的圖象與x軸交于A(-1,0),B兩點(diǎn),在x軸上方且平行于x軸的直線EF與拋物線交于E,F(xiàn)兩點(diǎn),E在F的左側(cè),過(guò)E,F(xiàn)分別作x軸的垂線,垂足是M,N.
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo);
(2)設(shè)BN=t,矩形EMNF的周長(zhǎng)為C,求C與t的函數(shù)表達(dá)式;
(3)當(dāng)矩形EMNF的周長(zhǎng)為10時(shí),將△ENM沿EN翻折,點(diǎn)M落在坐標(biāo)平面內(nèi)的點(diǎn)記為M',試判斷點(diǎn)M'是否在拋物線上?并說(shuō)明理由.

【答案】分析:(1)因?yàn)閽佄锞上的點(diǎn)的坐標(biāo)符合解析式,將A的坐標(biāo)代入解析式即可求得m的值,進(jìn)而求出解析式,即可求得頂點(diǎn)坐標(biāo);
(2)求出A、B兩點(diǎn)坐標(biāo),可表示出MN的長(zhǎng),求出F點(diǎn)縱坐標(biāo),可知NF的長(zhǎng),利用矩形面積公式即可求出C與t的函數(shù)表達(dá)式;
(3)根據(jù)反折變換的性質(zhì)(反折前后圖形全等),結(jié)合勾股定理,求出M’點(diǎn)坐標(biāo),代入二次函數(shù)解析式驗(yàn)證.
解答:解:(1)由于拋物線過(guò)點(diǎn)A(-1,0),
于是將A代入y=-x2+2mx+m+2
得-1-2m+m+2=0,
解得m=1,
函數(shù)解析式為y=-x2+2x+3,
解析式可化為y=-(x-1)2+4,頂點(diǎn)縱坐標(biāo)為(1,4).

(2)因?yàn)楹瘮?shù)解析式為y=-x2+2x+3,
所以當(dāng)y=0時(shí)可得-x2+2x+3=0,解得x1=-1,x2=3,
則AB=3-(-1)=4.
又因?yàn)锽N=t,M、N關(guān)于對(duì)稱軸對(duì)稱,
所以AM=t.于是MN=4-2t,
N點(diǎn)橫坐標(biāo)為3-t,代入拋物線得:yF=-t2+4t.
于是C=2(4-2t)-2(t-2)2+8,
整理得C=-2t2+4t+8;

(3)當(dāng)-2t2+4t+8=10時(shí),解得t=1,MN=4-2t=4-2=2;
FN=-12+4=3,因?yàn)閠=1,所以M與O點(diǎn)重合,連接MM'、EN,
且MM'和E相交于K,根據(jù)反折變換的性質(zhì),MK=M'K.
根據(jù)同一個(gè)三角形面積相等,2×3=•MK
于是MK=,MM'=
作M'H⊥MN的延長(zhǎng)線于H.
設(shè)NH=a,HM′=b,
于是在Rt△NHM'和RT△MHM'中,,
解得a=,b=
于是MH=2+=
M'點(diǎn)坐標(biāo)為(,),
代入函數(shù)解析式y(tǒng)=-x2+2x+3,y=-x2+2x+3=-(2+2×+3=,點(diǎn)M'不在拋物線上.
點(diǎn)評(píng):此題考查了利用代入法求函數(shù)解析式、根據(jù)矩形的性質(zhì)列函數(shù)表達(dá)式以及結(jié)合翻變換折判斷點(diǎn)是否在函數(shù)圖象上,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱;拋物線C1,C3關(guān)于y軸對(duì)稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫(xiě)出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫(xiě)一個(gè),寫(xiě)錯(cuò)、多寫(xiě)記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫(xiě)出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對(duì)稱軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過(guò)點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過(guò)點(diǎn)F且與y軸平行.直線y=-x+m過(guò)點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)K為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長(zhǎng)度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時(shí),x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊(cè)答案