【題目】以下幾何圖形中:①等邊三角形;②矩形;③平行四邊形;④等腰三角形;⑤菱形.既是軸對稱圖形,又是中心對稱圖形的是(填序號).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程3(x﹣1)+a=b(x+1)是一元一次方程,則( 。
A. a,b為任意有理數(shù) B. a≠0
C. b≠0 D. b≠3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點(diǎn),且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是( )
A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.求證:△ABD≌△CAF;
(2)如圖2,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE⊥AC、CF⊥AB于點(diǎn)E、F,BE與CF交于點(diǎn)D,DE=DF,連接AD.
求證:(1)∠FAD=∠EAD;
(2)BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0,),點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對稱點(diǎn),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式.
(2)點(diǎn)F為線段AC上一動點(diǎn),過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當(dāng)四邊形OEFG為正方形時(shí),求出F點(diǎn)的坐標(biāo).
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動,設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(x,﹣4)與點(diǎn)N(2,y)關(guān)于y軸對稱,則x﹣y的值為( 。
A. ﹣6 B. 6 C. 2 D. ﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com