【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0,),點A坐標為(﹣1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達式.
(2)點F為線段AC上一動點,過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設(shè)平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請說明理由.
【答案】(1)y=﹣x2+;(2)(1,1);(3)當△DMN是等腰三角形時,t的值為,3﹣或1.
【解析】
試題分析:(1)易得拋物線的頂點為(0,),然后只需運用待定系數(shù)法,就可求出拋物線的函數(shù)關(guān)系表達式;
(2)①當點F在第一象限時,如圖1,可求出點C的坐標,直線AC的解析式,設(shè)正方形OEFG的邊長為p,則F(p,p),代入直線AC的解析式,就可求出點F的坐標;②當點F在第二象限時,同理可求出點F的坐標,此時點F不在線段AC上,故舍去;
(3)過點M作MH⊥DN于H,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三種情況(①DN=DM,②ND=NM,③MN=MD)討論就可解決問題.
試題解析:(1)∵點B是點A關(guān)于y軸的對稱點,
∴拋物線的對稱軸為y軸,
∴拋物線的頂點為(0,),
故拋物線的解析式可設(shè)為y=ax2+.
∵A(﹣1,2)在拋物線y=ax2+上,
∴a+=2,
解得a=﹣,
∴拋物線的函數(shù)關(guān)系表達式為y=﹣x2+;
(2)①當點F在第一象限時,如圖1,
令y=0得,﹣x2+=0,
解得:x1=3,x2=﹣3,
∴點C的坐標為(3,0).
設(shè)直線AC的解析式為y=mx+n,
則有,
解得,
∴直線AC的解析式為y=﹣x+.
設(shè)正方形OEFG的邊長為p,則F(p,p).
∵點F(p,p)在直線y=﹣x+上,
∴﹣p+=p,
解得p=1,
∴點F的坐標為(1,1).
②當點F在第二象限時,
同理可得:點F的坐標為(﹣3,3),
此時點F不在線段AC上,故舍去.
綜上所述:點F的坐標為(1,1);
(3)過點M作MH⊥DN于H,如圖2,
則OD=t,OE=t+1.
∵點E和點C重合時停止運動,∴0≤t≤2.
當x=t時,y=﹣t+,則N(t,﹣t+),DN=﹣t+.
當x=t+1時,y=﹣(t+1)+=﹣t+1,則M(t+1,﹣t+1),ME=﹣t+1.
在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.
在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,
∴MN2=12+()2=.
①當DN=DM時,
(﹣t+)2=t2﹣t+2,
解得t=;
②當ND=NM時,
﹣t+=,
解得t=3﹣;
③當MN=MD時,
=t2﹣t+2,
解得t1=1,t2=3.
∵0≤t≤2,∴t=1.
綜上所述:當△DMN是等腰三角形時,t的值為,3﹣或1.
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形中,是中心對稱圖形但不是軸對稱圖形的是( )
A.等邊三角形B.平行四邊形C.一次函數(shù)圖象D.反比例函數(shù)圖象
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算中結(jié)果正確的是( )
A.4+5ab=9ab
B.6xy﹣x=6y
C.3a2b﹣3ba2=0
D.12x3+5x4=17x7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°,
(1)根據(jù)要求作圖(尺規(guī)作圖,保留作圖痕跡,不寫畫法):
①作∠BAC的平分線AD交BC于D;
②作線段AD的垂直平分線交AB于E,交AC于F,垂足為H;
③連接ED.
(2)在(1)的基礎(chǔ)上寫出一對全等三角形:△ ≌△ 并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A.“買一張彩票中獎”發(fā)生的概率是0
B.“軟木塞沉入水底”發(fā)生的概率是0
C.“太陽東升西落”發(fā)生的概率是1
D.“投擲一枚骰子點數(shù)為8”是確定事件
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a=123456789×987654321,b=123456788×987654322,則下列各式正確的是( )
A. a>b B. a<b C. a=b D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=2(x﹣3)2可以看作是由拋物線y=2x2按下列何種變換得到的( )
A.向左平移3個單位長度
B.向右平移3個單位長度
C.向上平移3個單位長度
D.向下平移3個單位長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將點(﹣2,﹣4)向下平移3個單位長度后得到的點的坐標是( 。
A.(﹣2,﹣1)B.(﹣5,﹣4)C.(1,﹣4)D.(﹣2,﹣7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com