【題目】 在正方形ABCD中.
(1)如圖1,點E、F分別在BC、CD上,AE、BF相交于點O,∠AOB=90°,試判斷AE與BF的數(shù)量關(guān)系,并說明理由;
(2)如圖2,點E、F、G、H分別在邊BC、CD、DA、AB上,EG、FH相交于點O,∠GOH=90°,且EG=7,求FH的長;
(3)如圖3,點E、F分別在BC、CD上,AE、BF相交于點O,∠AOB=90°,若AB=5,圖中陰影部分的面積與正方形的面積之比為4:5,求△ABO的周長.
【答案】(1)AE=BF,理由見解析;(2)FH=7;(3)△AOB的周長為5+
【解析】
(1)由四邊形ABCD是正方形可得AB=BC,∠ABE=∠BCF=90°,根據(jù)余角的性質(zhì)可得∠BAO=∠CBF,然后根據(jù)ASA可證△ABE≌△BCF,進而可得結(jié)論;
(2)如圖4,作輔助線,構(gòu)建平行四邊形AMEG和平行四邊形BNFH,得AM=GE,BN=FH,由(1)題的結(jié)論知△ABM≌△BCN,進而可得FH的長;
(3)根據(jù)正方形的面積和陰影部分的面積可得:空白部分的面積為25-20=5,易得△AOB的面積與四邊形OECF的面積相等,設(shè)AO=a,BO=b,則易得ab=5,根據(jù)勾股定理得:a2+b2=52,然后根據(jù)完全平方公式即可求出a+b,進一步即得結(jié)果.
解:(1)AE=BF,理由是:如圖1,∵四邊形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
∵∠AOB=90°,∴∠BAO+∠ABO=90°,
又∵∠CBF+∠ABO=90°,∴∠BAO=∠CBF,
∴△ABE≌△BCF(ASA).
∴AE=BF;
(2)在圖2中,過點A作AM∥GE交BC于M,過點B作BN∥FH交CD于N,AM與BN交于點O′,如圖4,則四邊形AMEG和四邊形BNFH均為平行四邊形,
∴AM=GE,BN=FH,
∵∠GOH=90°,AM∥GE,BN∥FH,∴∠AO′B=90°,
由(1)得,△ABM≌△BCN,∴AM=BN,
∴FH=GE=7;
(3)如圖3,∵陰影部分的面積與正方形ABCD的面積之比為4:5,
∴陰影部分的面積為×25=20,∴空白部分的面積為25-20=5,
由(1)得,△ABE≌△BCF,
∴△AOB的面積與四邊形OECF的面積相等,均為×5=,
設(shè)AO=a,BO=b,則ab=,即ab=5,
在Rt△AOB中,∠AOB=90°,∴a2+b2=52,
∴a2+2ab+b2=25+10=35,即,
∴a+b=,即AO+BO=,
∴△AOB的周長為5+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知AB=10,點C、D在線段AB上且AC=DB=2; P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作等邊△AEP和等邊△PFB,連結(jié)EF,設(shè)EF的中點為G;當點P從點C運動到點D時,則點G移動路徑的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=ɑ(0°<ɑ<180°),點A.B分別在OM、ON上運動(不與點O重合).
(1)如圖1,∠MON=90°,BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交與點D.
①若∠BAO=60°,則∠D=___.
②猜想:∠D的度數(shù)是否隨A,B的移動發(fā)生變化?并說明理由。
(2)如圖2,∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余條件不變,則∠D=___°(用含α、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點,且B(1,0)
(1)求拋物線的解析式和點A的坐標;
(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;
(3)如圖2,已知直線y=x﹣分別與x軸、y軸交于C、F兩點,點Q是直線CF下方的拋物線上的一個動點,過點Q作y軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D、E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F,CD=2,則DF的長為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市舉行“第十七屆中小學生書法大賽”作品比賽,已知每幅參賽作品成績記為,組委會從1000幅書法作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制成如下統(tǒng)計圖表.
分數(shù)段 | 頻數(shù) | 百分比 |
38 | 0.38 | |
| 0.32 | |
|
| |
10 | 0.1 | |
合計 | 100 | 1 |
書法作品比賽成績頻數(shù)直方圖
根據(jù)上述信息,解答下列問題:
(1)請你把表中空白處的數(shù)據(jù)填寫完整.
(2)請補全書法作品比賽成績頻數(shù)直方圖.
(3)若80分(含80分)以上的書法作品將被評為等級獎,試估計全市獲得等級的幅數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOC=80°,OE是∠BOC的角平分線,OF是OE的反向延長線.
(1)求∠2、∠3的度數(shù);
(2)說明OF平分∠AOD的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com