【題目】如圖,正方形ABCD的邊長為,點P為對角線BD上一動點,點E在射線BC上,
(1)填空:BD=______;
(2)若BE=t,連結(jié)PE、PC,求PE+PC的最小值(用含t的代數(shù)式表示);
(3)若點E是直線AP與射線BC的交點,當△PCE為等腰三角形時,求∠PEC的度數(shù).
【答案】(1)BD=2 (2) (3)120° 30°
【解析】.
(1)根據(jù)勾股定理計算即可;
(2)連接AP,當AP與PE在一條線上時,PE+PC最小,利用勾股定理求出最小值;
(3)分兩種情況考慮:①當E在BC延長線上時,如圖2所示,△PCE為等腰三角形,則CP=CE;②當E在BC上,如圖3所示,△PCE是等腰三角形,則PE=CE,分別求出∠PEC的度數(shù)即可.
(1)BD==2 ;
(2)如圖1所示:當AP與PE在一條線上時,PE+PC最小,
∵AB=,BE=t,
∴PE+PC的最小值為,
(3)分兩種情況考慮:
①當點E在BC的延長線上時,
如圖2所示,△PCE是等腰三角形,則CP=CE,
∴∠CPE=∠CEP,
∴∠BCP=∠CPE+∠CEP=2∠CEP,
∵在正方形ABCD中,∠ABC=90°,
∴∠PBA=∠PBC=45°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP=2∠CEP,
∵∠BAP+∠PEC=90°,
∴2∠PEC+∠PEC=90°,
∴∠PEC=30°;
②當點E在BC上時,
如圖3所示,△PCE是等腰三角形,則PE=CE,
∴∠CPE=∠PCE,
∴∠BEP=∠CPE+∠PCE=2∠ECP,
∵四邊形ABCD是正方形,
∴∠PBA=∠PBC=45°,
又AB=BC,BP=BP,
∴△ABP≌△CBP,
∴∠BAP=∠BCP,
∵∠BAP+∠AEB=90°,
∴2∠BCP+∠BCP=90°,
∴∠BCP=30°,
∴∠AEB=60°,
∴∠PEC=180°-∠AEB=120° .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副直角三角尺的直角頂點C疊放在一起.
(1)如圖 1,若 CE 恰好是∠ACD 的角平分線,請你猜想此時 CD 是不是∠ECB 的角平分線?只回答出“是”或“不是”即可;
(2)如圖 2,若∠ECD=α,CD 在∠BCE 的內(nèi)部,請你猜想∠ACE 與∠DCB是否相等?并簡述理由;
(3)在(2)的條件下,請問∠ECD 與∠ACB 的和是多少?并簡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大小不同的兩個磁塊,其截面都是等邊三角形,小三角形邊長是大三角形邊長的一半,點O是小三角形的內(nèi)心,現(xiàn)將小三角形沿著大三角形的邊緣順時針滾動,當由①位置滾動到④位置時,線段OA繞點O順時針轉(zhuǎn)過的角度是( )
A.240°
B.360°
C.480°
D.540°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+5(k1<0)的圖象與坐標軸交于A,B兩點,與反比例函數(shù)y= (k2>0)的圖象交于M,N兩點,過點M作MC⊥y軸于點C,已知CM=1.
(1)求k2﹣k1的值;
(2)若 = ,求反比例函數(shù)的解析式;
(3)在(2)的條件下,設點P是x軸(除原點O外)上一點,將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x+b(b<0)與坐標軸交于A,B兩點,與雙曲線(x>0)交于D點,過點D作DC⊥x軸,垂足為G,連接OD.已知△AOB≌△ACD.
(1)如果b=﹣2,求k的值;
(2)試探究k與b的數(shù)量關系,并寫出直線OD的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,將△ABE沿AE所在直線翻折得△AB′E,AB′與CD邊交于點F,則B′F的長度為( )
A. 1 B. C. 2-2 D. 2-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電銷售商場電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調(diào)的進價多400元,商場用80000元購進電冰箱的數(shù)量與用64000元購進空調(diào)的數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進價分別是多少?
(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13200元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com