請用分解因式的方法說明:四個連續(xù)正整數(shù)的積與1的和,一定是一個完全平方數(shù).

解:設四個連續(xù)的正整數(shù)為n、(n+1)、(n+2)、(n+3)則
n(n+1)(n+2)(n+3)+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2.(其中n為正整數(shù),且n>1).
分析:此題要用代數(shù)式把連續(xù)的正整數(shù)表示出來,按照題中給出的關系列出式子,進行驗證,只要會把最后形式寫成一個完全平方式的形式就能證明此結論.
點評:本題考查的是因式分解的應用,先把所求代數(shù)式分解為幾個多項式的積的形式是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:
若設關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,那么由根與系數(shù)的關系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三項式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)請用上面的方法將多項式4x2+8x-1分解因式.
(2)判斷二次三項式2x2-4x+7在實數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說明理由.
(3)如果關于x的二次三項式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

請用分解因式的方法說明:四個連續(xù)正整數(shù)的積與1的和,一定是一個完全平方數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有足夠多的長方形和正方形卡片,如圖:
(1)如果選取1號、2號、3號卡片分別為l張、1張、2張,可拼成一個長方形(不重疊無縫隙),請畫出這個長方形的草圖,并運用拼圖前后面積之間的關系說明這個長方形的代數(shù)意義.
這個長方形的代數(shù)意義是
兩數(shù)和的平方等于兩數(shù)的平方和加上兩數(shù)積的2倍
兩數(shù)和的平方等于兩數(shù)的平方和加上兩數(shù)積的2倍

(2)小明用類似方法解釋分解因式4a2+8ab+3b2,請拼圖說明小明的方法,并寫出分解因式的結果.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀下面材料:
若設關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,那么由根與系數(shù)的關系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三項式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)請用上面的方法將多項式4x2+8x-1分解因式.
(2)判斷二次三項式2x2-4x+7在實數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說明理由.
(3)如果關于x的二次三項式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

同步練習冊答案