【題目】如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎低端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.

【答案】42

【解析】

延長ABDCH,作EGABG,則GH=DE=15米,EG=DH,設BH=x米,則CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.

延長ABDCH,作EGABG,如圖所示:


GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
BH:CH=1:2.4,
BH=x米,則CH=2.4x米,
RtBCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
BH=5米,CH=12米,
BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
AG=EG=32(米),
AB=AG+BG=32+10=42(米);
故答案為:42

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,PD切O于點C,與BA的延長線交于點D,DEPO交PO延長線于點E,連接PB,EDB=EPB

(1)求證:PB是的切線

(2)若PB=6,DB=8,求O的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD是矩形紙片,翻折∠B、∠D,使BC、AD恰好落在AC上.設FH分別是B、D落在AC上的兩點,E、G分別是折痕CEAGAB、CD的交點.

1)求證:四邊形AECG是平行四邊形:

2)若AB=8cm,BC=6cm,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見表:

每臺甲型收割機的租金

每臺乙型收割機的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求yx間的函數(shù)關系式,并寫出x的取值范圍;

(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設計出來;

(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交ABF,連接BE

(1)求證:AC平分∠DAB;

(2)求證:PCPF;

(3)tanABC,AB14,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點EF分別在AD、CD上,AF、BE相交于點G,且AF=BE,則下列結論不正確的是:(

A.AFBEB.BG=GFC.AE=DFD.EBC=AFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O

1)尺規(guī)作圖:以OAOD為邊,作矩形OAED(不要求寫作法,但保留作圖痕跡);

2)若在菱形ABCD中,∠BAD=120 °,AD=2,求所作矩形OAED的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6分)如圖,△ABC三個頂點的坐標分別為A2,4),B1,1),C4,3).

1)請畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標;

2)請畫出△ABC繞點B逆時針旋轉90°后的△A2BC2

3)求出(2)中C點旋轉到C2點所經(jīng)過的路徑長(記過保留根號和π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,ABBC2,∠BAC,∠ACB的平分線相交于點E,過點EEFBCAC于點F,則EF的長為_____

查看答案和解析>>

同步練習冊答案