【題目】李明到離家2.1千米的學校參加初三聯(lián)歡會,到學校時發(fā)現(xiàn)演出道具還放在家中,此時距聯(lián)歡會開始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車返回學校.已知李明騎自行車到學校比他從學校步行到家用時少20分鐘,且騎自行車的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會開始前趕到學校?
【答案】(1)李明步行的速度是70米/分.(2)能在聯(lián)歡會開始前趕到學校.
【解析】
試題分析:(1)設(shè)步行速度為x米/分,則自行車的速度為3x米/分,根據(jù)等量關(guān)系:騎自行車到學校比他從學校步行到家用時少20分鐘可得出方程,解出即可;
(2)計算出步行、騎車及在家拿道具的時間和,然后與42比較即可作出判斷.
試題解析:(1)設(shè)步行速度為x米/分,則自行車的速度為3x米/分,
根據(jù)題意得:,
解得:x=70,
經(jīng)檢驗x=70是原方程的解,
即李明步行的速度是70米/分.
(2)根據(jù)題意得,李明總共需要:+1=41<42.
即李明能在聯(lián)歡會開始前趕到.
答:李明步行的速度為70米/分,能在聯(lián)歡會開始前趕到學校.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( 。
A. 0既不是正數(shù),也不是負數(shù)
B. 除以一個不為零的數(shù)等于乘以這個數(shù)的倒數(shù)
C. 沒有最大的負整數(shù)
D. 數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長沙市某家小型“大學生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年6月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分9分)某百貨大摟服裝柜在銷售中發(fā)現(xiàn):“七彩”牌童裝平均每天可售出20件,每件盈利40元.為了迎接“元旦”,商場決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利,減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.
(1)要想平均每天銷售這種童裝盈利1200元,那么每件童裝應(yīng)降價多少元?
(2)用配方法說明:要想盈利最多,每件童裝應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大潤發(fā)超市進了一批成本為8元/個的文具盒。調(diào)查發(fā)現(xiàn): 這種文具盒每個星期的銷售量個)與它的定價(元/個)的關(guān)系如圖所示:
(1)求這種文具盒每個星期的銷售量個)與它的定價(元/個)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍)
(2)每個文具盒定價是多少元時,超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為4cm的等邊三角形,AD為BC邊上的高,點P沿BC向終點C運動,速度為1cm/s,點Q沿CA、AB向終點B運動,速度為2cm/s,若點P、Q兩點同時出發(fā),設(shè)它們的運動時間為x(s).
(l)求x為何值時,PQ⊥AC;x為何值時,PQ⊥AB?
(2)當O<x<2時,AD是否能平分△PQD的面積?若能,說出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市用3 000元購進某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購進該種干果,但這次的進價比第一次的進價提高了20%,購進干果數(shù)量比第一次的2倍還多300 kg.如果超市按9元/kg的價格出售,當大部分干果售出后,余下的600 kg按售價的八折售完.
(1)該種干果第一次的進價是多少?
(2)超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com