【題目】已知:AB,PQ是圓O的兩條直徑,連接PB,AQ.
(1)如圖①,求證:AQ∥BP,AG∥BP;
(2)如圖②,過點B作BC⊥PQ于點D,交圓O于點C,在DG上取一點K,使DK=DP,求證:四邊形AQKC是平行四邊形.
【答案】
(1)證明:∵ = ,
∴∠P=∠A,
∵OA=OQ,
∴∠A=∠Q,
∴∠P=∠Q,
∴AQ∥PB.
∵∠AOQ=∠BOP,
∴ = ,
∴AQ=BP;
(2)證明:∵PQ⊥BC,
∴BD=CD,
又∵PD=DK,
∴BC與PK互相垂直且平分,
∴四邊形BKCP為菱形;
∴PB∥CK,且PB=CK,
∵PB∥AQ,
∴CK∥AQ,
∵PB=AQ,
∴CK=AQ,
∵CK∥AQ,且CK=AQ,
∴四邊形AQKC為平行四邊形.
【解析】(1)由同弧所對的圓周角相等得出∠P=∠A,由OA=OQ得出∠A=∠Q,那么∠P=∠Q,AQ∥PB.根據(jù)∠AOQ=∠BOP,得到 = ,那么AQ=BP;(2)先由垂徑定理得出BD=CD,又PD=DK,得出四邊形BKCP為菱形,根據(jù)菱形的性質(zhì)得出PB∥CK,再證明CK∥AQ,且CK=AQ,那么四邊形AQKC為平行四邊形.
【考點精析】本題主要考查了平行四邊形的判定和圓周角定理的相關(guān)知識點,需要掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大正方體上截去一個小正方體后,可得到圖的幾何體.
設(shè)原大正方體的表面積為,圖中幾何體的表面積為,那么與的大小關(guān)系是( )
、、、、不確定
小明說:“設(shè)圖中大正方體各棱的長度之和為,圖中幾何體各棱的長度之和為,那么比正好多出大正方體條棱的長度.”若設(shè)大正方體的棱長為,小正方體的棱長為,請問為何值時,小明的說法才正確?
如果截去的小正方體的棱長為大正方體棱長的一半,那么圖是圖中幾何體的表面展開圖嗎?如有錯誤,請在圖中修正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有75名工人生產(chǎn)A、B兩種零件,一名工人每天可生產(chǎn)A種零件15個或B 種 零件20個,已知1個B種零件需要配3個A種零件,該車間應(yīng)如何分配工人,才能保證每天生產(chǎn)的兩種零件恰好配套?設(shè)應(yīng)安排x名工人生產(chǎn)A種零件,根據(jù)題意,列出的方程是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC和Rt△DBE中,∠ABC=∠EBD=90°,AB=BC,DB=EB.顯然可得結(jié)論AD=EC,AD⊥EC.
(1)閱讀:當(dāng)Rt△DBE繞點B逆時針旋轉(zhuǎn)到圖2的位置時,連接AD,CE.求證:AD=EC,AD⊥EC.
下面給出了小亮的證明過程,請你把小亮的證明過程填寫完整:
∵∠ABC=∠EBD,∴∠ABC-∠ABE=∠EBD-∠ABE,即∠EBC=∠DBA.在△EBC和△DBA中,
BC=BA,∠______=∠______,BE=BD,
∴△EBC≌△DBA,∴CE=AD,∠ECB=∠______.
∵∠ECB+∠ACE+∠CAB=90°,∴∠DAB+∠ACE+∠CAB=90°,∴∠______=90°,∴AD⊥EC.
(2)類比:當(dāng)Rt△DBE繞點B逆時針旋轉(zhuǎn)90°得到圖3時,連接AD,CE.問(1)中線段AD,EC間的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,請給出證明;若不成立,請說明理由;
(3)拓展:當(dāng)Rt△DBE繞點B逆時針旋轉(zhuǎn)到圖4時,連接AD,CE.請說明AD,EC間的數(shù)量關(guān)系和位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)23﹣6×(﹣3)+2×(﹣4) ; (2)﹣16﹣(﹣5)+23﹣|﹣|
(3)﹣(1﹣0.5)÷×[2+(﹣4)2].
(4)(4)﹣22﹣(﹣)2×+6÷|﹣2|+(﹣1)5×(﹣)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩站相距240千米,從甲站開出一列慢車,速度為每小時80千米,從乙站開出一列快車,速度為每小時120千米.
(1)若兩車同時開出,背向而行,則經(jīng)過多長時間兩車相距540千米?
(2)若兩車同時開出,同向而行(快車在后),則經(jīng)過多長時間快車可追上慢車?
(3)若兩車同時開出,同向而行(慢車在后),則經(jīng)過多長時間兩車相距300千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下一組數(shù):,請用你發(fā)現(xiàn)的規(guī)律,猜想第2018個數(shù)為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com