【題目】已知二次函數(shù)y1=x2﹣2x﹣3,一次函數(shù)y2=x﹣1.
(1)在同一坐標系中,畫出這兩個函數(shù)的圖象;
(2)根據(jù)圖形,求滿足y1>y2的x的取值范圍.
【答案】(1)見解析;(2)x<或x>.
【解析】
(1)利用描點法畫出兩函數(shù)圖象;
(2)設二次函數(shù)y1=x2﹣2x﹣3的圖象與一次函數(shù)y2=x﹣1的圖象相交于A、B兩點,如圖,通過解方程x2﹣2x﹣3=x﹣1得A點和B點的橫坐標,然后結(jié)合函數(shù)圖象,寫出拋物線在直線上方所對應的自變量的范圍即可.
解:(1)列表如下:
xy | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 |
y1 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 |
y2 | ﹣1 | 0 |
這兩個函數(shù)的圖象,如圖,
(2)設二次函數(shù)y1=x2﹣2x﹣3的圖象與一次函數(shù)y2=x﹣1的圖象相交于A、B兩點,如圖,
令y1=y2,得x2﹣2x﹣3=x﹣1,
整理得x2﹣3x﹣2=0,解得1=,x2=,
∴A點和B點的橫坐標分別為,,
∴當x<或x>,
∴y1>y2,
即滿足不等式y1>y2的x的取值范圍為x<或x>.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別加工100個零件,甲第1個小時加工了10個零件,之后每小時加工30個零件.乙在甲加工前已經(jīng)加工了40個零件,在甲加工3小時后乙開始追趕甲,結(jié)果兩人同時完成任務.設甲、乙兩人各自加工的零件數(shù)為(個),甲加工零件的時間為(時),與之間的函數(shù)圖象如圖所示.
(1)在乙追趕甲的過程中,求乙每小時加工零件的個數(shù).
(2)求甲提高加工速度后甲加工的零件數(shù)與之間的函數(shù)關(guān)系式.
(3)當甲、乙兩人相差12個零件時,直接寫出甲加工零件的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“陽光體育”活動,決定開設乒乓球、籃球、跑步、跳繩這四種運動項目,學生只能選擇其中一種,為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成兩張不完整的統(tǒng)計圖,請你結(jié)合圖中的信息解答下列問題:
(1)樣本中喜歡籃球項目的人數(shù)百分比是 ;其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;
(2)把條形統(tǒng)計圖補畫完整并注明人數(shù);
(3)已知該校有1000名學生,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某單位需招聘一名技術(shù)員,對甲、乙、丙三名候選人進行了筆試和面試兩項測試,其成績?nèi)缦卤硭荆鶕?jù)錄用程序,該單位又組織了名人員對三人進行民主評議,其得票率如扇形圖所示,每票分(沒有棄權(quán)票。每人只能投票)
測試項目 | 測試成績分 | ||
甲 | 乙 | 丙 | |
筆試 | |||
面試 |
(1)請算出三人的民主評議得分.
(2)該單位將筆試、面試、民主評議三項得分按確定綜合成績,且民主評議得分低于分不錄取,誰將被錄用?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(m,m+3),點B(n,n﹣3)是反比例函數(shù)y=(k>0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為( )
A.B.6C.D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角頂點P1(3,3),P2,P3,…均在直線y=﹣x+4上,設△P1OA1,△P2A1A2,△P3A2A3,…的面積分別為S1,S2,S3,…依據(jù)圖形所反映的規(guī)律,S2019=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,我們把橫、縱坐標都是整數(shù)的點叫做整點.已知點A(0,4),點B是x軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當點B的橫坐標為4時,m的值是_____.當點B的橫坐標為4n(n為正整數(shù))時,m=_____(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,合肥市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡文明部分對應的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.
(1)①若點在直線上,則點的“理想值”等于_______;
②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.
(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;
(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規(guī)作圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com