如圖,已知△ABC的頂點(diǎn)B、C為定點(diǎn),A為動(dòng)點(diǎn)(不在直線BC上),B′是點(diǎn)B關(guān)于直線AC的對稱點(diǎn),C′是點(diǎn)C關(guān)于直線AB的對稱點(diǎn),連接BC′、CB′、BB′、CC′.
(1)猜想線段BC′與CB′的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)A運(yùn)動(dòng)到怎樣的位置時(shí),四邊形BCB′C′為菱形?這樣的位置有幾個(gè)?請用語言對這樣的位置進(jìn)行描述(不用證明);
(3)當(dāng)點(diǎn)A在線段BC的垂直平分線(BC的中點(diǎn)及到BC的距離為
3
BC
6
的點(diǎn)除外)精英家教網(wǎng)上運(yùn)動(dòng)時(shí),判斷以點(diǎn)B、C、B′、C′為頂點(diǎn)的四邊形的形狀,畫出相應(yīng)的示意圖.(不用證明)
分析:在(1)中,根據(jù)題意結(jié)合圖形可以很容易發(fā)現(xiàn)BC′=CB′.
(2)中BCB′C′為菱形,根據(jù)菱形的性質(zhì)對角線互相垂直平分,而AC⊥BB′,AB⊥CC′,所以只要BB′與CC′相交于A點(diǎn)即可,即△ABC為直角三角形.
(3)分情況討論可以得出結(jié)果.
解答:精英家教網(wǎng)解:(1)猜想:BC′=CB′
∵B′是點(diǎn)B關(guān)于直線AC的對稱點(diǎn)
∴AC垂直平分BB'
∴BC=B'C
同理BC=BC'
∴BC'=CB'

(2)要使BCB'C'是菱形
根據(jù)菱形的性質(zhì),對角線互相垂直平分
∵B′是點(diǎn)B關(guān)于直線AC的對稱點(diǎn),C′是點(diǎn)C關(guān)于直線AB的對稱點(diǎn)
∴AC垂直平分BB'AB垂直平分CC'
∴BB'、CC'應(yīng)該同時(shí)過A點(diǎn)
∴∠BAC=90°
∴只要AB⊥AC即可滿足要求,這樣的位置有無數(shù)個(gè)

(3)如圖,當(dāng)A是BC的中點(diǎn)時(shí),沒有形成四邊形
當(dāng)A到BC的距離為
3
6
BC
時(shí)
∵l是BC的垂直平分線
∴∠ACB=∠ABC=30°
∴∠BAC=120°
∴∠BOC=60°
∴BC=CB'=B'C'=BC'
∴BCB'C'為菱形
當(dāng)BC的中點(diǎn)及到BC的距離為
3
BC
6
的點(diǎn)除外時(shí)
∵∠BOC=B'OC'OB=OC  OB'=OC'
∴∠OBC=∠OCB=∠OB'C'=∠OC'B'
∴BC∥B'C'
∵BC'不平行CB'BC'=CB'
四邊形BCB'C'為等腰梯形.
點(diǎn)評:本題可以很好的培養(yǎng)觀察推理能力,按照要求畫出圖形可以更清楚的解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4

在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3
;
在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度,得到△EFA.
(1)判斷AF與BE的位置關(guān)系,并說明理由;
(2)若∠BEC=15°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請直接寫出點(diǎn)A關(guān)于y軸對稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請畫出△A1B1C1和△A2B2C1,并寫出一個(gè)點(diǎn)A2的坐標(biāo).(只畫一個(gè)△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個(gè)三角形,使它與△ABC關(guān)于y軸對稱;
(2)寫出(1)中所作的三角形的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案