【題目】在平面直角坐標(biāo)系中,直線y=x與雙曲線y=(k≠0)的一個(gè)交點(diǎn)為P(,n).將直線向上平移b(0>0)個(gè)單位長(zhǎng)度后,與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,與雙曲線的一個(gè)交點(diǎn)為Q.若AQ=3AB,則b=____.
【答案】或.
【解析】
將點(diǎn)P的坐標(biāo)代入y=x即可求得n=,然后把P(,)代入y=(k≠0)即可求得k的值;根據(jù)題意設(shè)平移后的直線為y=x+b,然后根據(jù)△ABO∽△AQC和AQ=3AB,求得Q點(diǎn)的坐標(biāo),代入y=,即可求得b.
解:(1)∵直線y=x經(jīng)過(guò)P(,n).
∴n=,
∴P(,),
∵點(diǎn)P(,)在y=(k≠0)上,
∴k=×=2.
∵直線y=x向上平移b(b>0)個(gè)單位長(zhǎng)度后的解析式為y=x+b,
∴OA=OB=b,
∵AQ=3AB,
作QC⊥x軸于C,
∴QC∥y軸,
∴△ABO∽△AQC,
∴
∴點(diǎn)Q坐標(biāo)(2b,3b)或(﹣4b,﹣3b)
∴6b2=2或﹣4b(﹣3b)=2
b=±或b=±,
∵b>0,
∴b=或b=,
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在雙曲線上,點(diǎn)在雙曲線上,軸,過(guò)點(diǎn)作軸于,連接,與相交于點(diǎn),若,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“元旦大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷(xiāo)活動(dòng)如下:在一個(gè)不透明的箱子里放有3張相同的卡片,卡片上分別標(biāo)有“10元”、“20元”和“30元”的字樣,規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里摸出一張卡片,記下錢(qián)數(shù)后放回,再?gòu)闹忻鲆粡埧ㄆ虉?chǎng)根據(jù)兩張卡片所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客最多可得到 元購(gòu)物券;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于40元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家去上學(xué),先步行一段路,因時(shí)間緊,他改騎共享單車(chē),結(jié)果到學(xué)校時(shí)遲到了7min,其行駛的路程(單位:)與時(shí)間(單位:)的關(guān)系如圖.若他出門(mén)時(shí)直接騎共享單車(chē)(兩次騎車(chē)速度相同),則下列說(shuō)法正確的是( )
A.小明會(huì)遲到2min到校B.小明剛好按時(shí)到校
C.小明可以提前1min到校D.小明可以提前2min到校
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形
(1)如圖1,、分別是、上的點(diǎn),,垂足為,連接.
①求證:;
②若為的中點(diǎn),求證:;
(2)如圖2,將矩形沿折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在邊的點(diǎn)處,連接交于點(diǎn),是的中點(diǎn).若,,直接寫(xiě)出的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線y=和直線y=-x+2,P是雙曲線第一象限上一動(dòng)點(diǎn),過(guò)P作y軸的平行線,交直線y=-x+2于Q點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求直線y=-x+2與坐標(biāo)軸圍成三角形的周長(zhǎng);
(2)設(shè)△PQO的面積為S,求S的最小值.
(3)設(shè)定點(diǎn)R(2,2),以點(diǎn)P為圓心,PR為半徑畫(huà)⊙P,設(shè)⊙P與直線y=-x+2交于M、N兩點(diǎn).
①判斷點(diǎn)Q與⊙P的位置關(guān)系,并說(shuō)明理由;
②求S△MON=S△PMN時(shí)的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京杭大運(yùn)河是世界文化遺產(chǎn).綜合實(shí)踐活動(dòng)小組為了測(cè)出某段運(yùn)河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點(diǎn)A、B和點(diǎn)C、D,先用卷尺量得AB=160m,CD=40m,再用測(cè)角儀測(cè)得∠CAB=30°,∠DBA=60°,求該段運(yùn)河的河寬(即CH的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,6),B(2,0),C(6,0),D為線段BC上的動(dòng)點(diǎn),以AD為邊向右側(cè)作正方形ADEF,連接CF交DE于點(diǎn)P,則CP的最大值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點(diǎn)D,連結(jié)AD(AD<AB),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.
(1)直線BD和CE的位置關(guān)系是 ;
(2)猜測(cè)BD和CE的數(shù)量關(guān)系并證明;
(3)設(shè)直線BD,CE交于點(diǎn)P,把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時(shí),直接寫(xiě)出PB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com