如圖1,在Rt△AOB中,∠AOB=90°,∠ABO=30°,OB=4,以O(shè)點(diǎn)為原點(diǎn),OB邊所在直線為x軸,建立直角坐標(biāo)系.在x軸上取一點(diǎn)D(2,0),作一個(gè)邊長(zhǎng)為2的等邊△PDE,此時(shí)P點(diǎn)與O點(diǎn)重合,E點(diǎn)在線段AB上(如圖).將△PDE沿x軸向右平移,直線AB與直線ED交于點(diǎn)F,回答下列問題:
(1)找出一條與OP始終相等的線段,并說(shuō)明理由;
(2)設(shè)點(diǎn)P與原點(diǎn)的距離為x,此時(shí)等邊△PDE與Rt△AOB重疊部分的面積為y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(圖2,圖3為備用圖)
精英家教網(wǎng)
分析:(1)設(shè)出E點(diǎn)的坐標(biāo),從而表示出點(diǎn)P、F的坐標(biāo),求出線段EF的長(zhǎng)度恰好等于OP;
(2)0≤x≤2時(shí),設(shè)PE交AB于G,證明得出△GFE為直角三角形,又因?yàn)镺P=EF,從而求出S△GFE,陰影部分面積即為S△EPD-S△GFE;2<x≤4時(shí),重疊部分為直角△PGB的面積,由OP=x,得到PB=4-x,根據(jù)30°角所對(duì)的直角邊等于斜邊的一半求出PG的長(zhǎng),再利用30°的余弦函數(shù)值求出GB的長(zhǎng),利用直角邊乘積的一半即可求出面積;x>4時(shí)△EFG在△AOB之外,y=0.
解答:精英家教網(wǎng)解:(1)與OP始終相等的線段為EF,
證明:設(shè)等邊△PDE運(yùn)動(dòng)到某位置時(shí)E點(diǎn)坐標(biāo)為(x1,
3
)(x1≥1),
則P(x1-1,0),則OP=x1-1,
∵∠EDP=60°,E(x1
3
)
在直線ED上,
∴ED的解析式為y=-
3
(x-x1)+
3

由題意可得直線AB的解析式為y=-
3
3
x+
4
3
3
,
則直線AB和直線ED的交點(diǎn)F的坐標(biāo)為(
3x1-1
2
,-
3
x1-3
3
2
),
則EF=
(x1-
3x1-1
2
)
2
+(
3
+
3
x1-3
3
2
)
2
=x1-1=OP,
∴與OP始終相等的線段為EF;

(2)設(shè)PE交AB與點(diǎn)G,由題意可知△PDE的面積為
3
精英家教網(wǎng)
當(dāng)0≤x≤2時(shí),在圖1中∠EPB+∠GBP=60°+30°=90°,
∴PE⊥AB,
∴△EFG為直角三角形,
∵∠E=60°,EF=OP=x,
∴∠EFG=30°,
∴GE=
1
2
x,GF=
3
2
x,
∴S△EFG=
1
2
×EG×GF=
1
2
×
1
2
3
2
x=
3
8
x2,
∴等邊△PDE與Rt△AOB重疊部分的面積y=S△EPD-S△GFE,即y=
3
-
3
8
x
(0≤x≤2);
當(dāng)2<x≤4時(shí),等邊△PDE與Rt△AOB重疊部分的面積為S△PGB,
OP=x,則PB=4-x,所以PG=
4-x
2
,GB=
3
(4-x)
2
,且△PGB為直角三角形,
所以S△PGB=
1
2
×
4-x
2
×
3
(4-x)
2
=
3
(4-x)2
8
;
當(dāng)x>4時(shí),兩個(gè)三角形相離,故y=0.
點(diǎn)評(píng):本題考查了正三角形直角三角形面積求法及分類討論的思想,具有較強(qiáng)的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△AOB中,∠AOB=90°,AO=4
3
,∠ABO=30°.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值.
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
(4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)已知:如圖1,在Rt△OAC中,AO⊥OC,點(diǎn)B在OC邊上,OB=6,BC=12,∠ABO+∠C=90°.動(dòng)點(diǎn)M和N分別在線段AB和AC邊上.
(l)求證△AOB∽△COA,并求cosC的值;
(2)當(dāng)AM=4時(shí),△AMN與△ABC相似,求△AMN與△ABC的面積之比;
(3)如圖2,當(dāng)MN∥BC時(shí),將△AMN沿MN折疊,點(diǎn)A落在四邊形BCNM所在平面的點(diǎn)為點(diǎn)E.設(shè)MN=x,△EMN與四邊形BCNM重疊部分的面積為y,試寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶全善學(xué)校九年級(jí)下學(xué)期第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值.
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
(4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶全善學(xué)校九年級(jí)下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.

(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值.

(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);

(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.

(4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在Rt△AOB中,∠AOB=90°,AO=數(shù)學(xué)公式,∠ABO=30°.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向終點(diǎn)B以每秒數(shù)學(xué)公式個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在直線OB 上取兩點(diǎn)M、N作等邊△PMN.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值.
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
(4)在(3)中,設(shè)PN與EC的交點(diǎn)為R,是否存在點(diǎn)R,使△ODR是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案