【題目】某中學(xué)了解本校學(xué)生對球類運(yùn)動的愛好情況,分為足球、籃球、排球、其他四個方面調(diào)查若干名學(xué)生,每人只選其中之一,統(tǒng)計后繪制成不完整的“折線統(tǒng)計圖”(扇形統(tǒng)計圖),根據(jù)信息解答下列問題:
(1)在這次調(diào)查中,一共調(diào)查 名學(xué)生;
(2)在扇形統(tǒng)計圖中,“足球”所在扇形圓心角 度;
(3)將折線統(tǒng)計圖補(bǔ)充完整.
【答案】(1)100,(2)108.(3)見解析
【解析】
試題分析:(1)根據(jù)愛好“排球”有40人,占被調(diào)查人數(shù)的40%列式計算可得總?cè)藬?shù);
(2)先求出“其他”所占百分比,再用1減去其他三項百分比可得足球占總?cè)藬?shù)的百分比,利用百分比可得扇形圓心角度數(shù);
(3)根據(jù)足球的百分比及總?cè)藬?shù)可得足球人數(shù),用總?cè)藬?shù)減去足球、排球、其他三項人數(shù)可得籃球的人數(shù),即可補(bǔ)全圖形.
解:(1)根據(jù)題意,知愛好“排球”的有40人,占被調(diào)查人數(shù)的40%,
故被調(diào)查人數(shù)為:40÷40%=100(人);
(2)“其他”項目占被調(diào)查人數(shù)百分比為:×100%=10%,
則“足球”項目人數(shù)占被調(diào)查人數(shù)的百分比為:1﹣(20%+40%+10%)=30%,
則在扇形統(tǒng)計圖中,“足球”所在扇形圓心角為:360°×30%=108°;
(3)愛好“足球”人數(shù)為:100×30%=30人,
愛好“籃球”人數(shù)為:100﹣30﹣40﹣10=20人,補(bǔ)全折線統(tǒng)計圖如下:
故答案為:(1)100,(2)108.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】粗心的小紅在計算n邊形的內(nèi)角和時,少加了一個內(nèi)角,求得的內(nèi)角和是2040°,則這個多邊形的邊數(shù)n和這個內(nèi)角分別是( )
A.11和60° B.11和120° C.12和60° D.14和120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為( )
A.100米 B.99米 C.98米 D.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是AB邊上一點,以CD為邊作等邊三角形CDE,使點E,A在直線DC同側(cè),連接AE.求證:
(1)△AEC≌BDC;
(2)AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E.
(1)求證:ABCF=CBCD;
(2)已知AB=15,BC=9,P是射線DE上的動點,設(shè)DP=x(x>0),四邊形BCDP的面積為y.
①求y關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)PB+PC最小時,求x,y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABO的面積;
(3)根據(jù)所給條件,請直接寫出不等式kx+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,b)(b>0),點P是直線AB上位于第二象限內(nèi)的一個動點,過點P作PC⊥x軸于點C,記點P關(guān)于y軸的對稱點為Q,設(shè)點P的橫坐標(biāo)為a.
(1)當(dāng)b=3時,
①求直線AB的解析式;
②若QO=QA,求P點的坐標(biāo).
(2)是否同時存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列每組數(shù)分別表示三根木棒的長度,將它們首尾連接后,能擺成三角形的一組是( )
A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com