如圖,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=600,M是BC的中點.

(1)求證:⊿MDC是等邊三角形;

(2)將⊿MDC繞點M旋轉(zhuǎn),當MD(即M)與AB交于一點E,MC即M)同時與AD交于一點F時,點E,F(xiàn)和點A構(gòu)成⊿AEF.試探究⊿AEF的周長是否存在最小值.如果不存在,請說明理由;如果存在,請計算出⊿AEF周長的最小值.

答案:
解析:

  (1)證明:過點D作DP⊥BC,于點P,過點A作AQ⊥BC于點Q,

  ∵∠C=∠B=600

  ∴CP=BQ=AB,CP+BQ=AB  (1分)

  又∵ADPQ是矩形,AD=PQ,故BC=2AD,

  由已知,點M是BC的中點,

  BM=CM=AD=AB=CD  (2)

  ⊿MDC,CM=CD,∠C=600,⊿MDC是等邊三角形  (3)

  (2)解:⊿AEF的周長存在最小值,理由如下:

  連接AM,由(1)平行四邊形ABMD是菱形,⊿MAB,⊿MAD和⊿M是等邊三角形,

  ∠BMA=∠BME+∠AME=600,∠EMF=∠AMF+∠AME=600

  ∴∠BME=∠AMF  (5分)

  在⊿BME與⊿AMF中,BM=AM,∠EBM=∠FAM=600

  ∴⊿BME≌⊿AMF(ASA)  (6分)

  ∴BE=AF,ME=MF,AE+AF=AE+BE=AB

  ∵∠EMF=∠DMC=600,故⊿EMF是等邊三角形,EF=MF  (7分)

  ∵MF的最小值為點M到AD的距離,即EF的最小值是

  ⊿AEF的周長=AE+AF+EF=AB+EF,

  ⊿AEF的周長的最小值為2+  (8分)


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求證:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•昌平區(qū)二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求證:AB=AD;
(2)求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,對角線BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度數(shù); 
(2)求梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延長BC到E,使CE=AD.
(1)求證:BD=DE;
(2)當DC=2時,求梯形面積.

查看答案和解析>>

同步練習冊答案