【題目】如圖,正六邊形A1B1C1D1E1F1的邊長(zhǎng)為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A10B10C10D10E10F10的邊長(zhǎng)為(  )

A. B. C. D.

【答案】D

【解析】解:連結(jié)OE1,OD1,OD2,如圖所示,

∵六邊形A1B1C1D1E1F1為正六邊形,

∴∠E1OD1=60°

∴△E1OD1為等邊三角形,

∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,

OD2E1D1,

OD2=E1D1=×2

∴正六邊形A2B2C2D2E2F2的邊長(zhǎng)=×2,

同理可得正六邊形A3B3C3D3E3F3的邊長(zhǎng)=2×2,

則正六邊形A10B10C10D10E10F10的邊長(zhǎng)=9×2=

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線ABDC,點(diǎn)P為平面上一點(diǎn),連接APCP.

(1)如圖1,點(diǎn)P在直線AB、CD之間,當(dāng)∠BAP=60°,DCP=20°時(shí),求∠APC.

(2)如圖2,點(diǎn)P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點(diǎn)K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線相交于點(diǎn)K,AKC與∠APC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B是反比例函數(shù)y圖象上兩點(diǎn),BPx軸,垂足為P.已知∠AOP=45°,OA=4, tan∠BOP

(1)求點(diǎn)A的坐標(biāo);

(2)連接AB,求四邊形AOPB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司購買一批玻璃杯和保溫杯,計(jì)劃用2000元購買玻璃杯,用2800元購買保溫杯.已知一個(gè)保溫杯比一個(gè)玻璃杯貴10元.該公司購買的玻璃杯與保溫杯的數(shù)量能相同嗎?

(1)根據(jù)題意,甲和乙兩同學(xué)都先假設(shè)該公司購買的玻璃杯與保溫杯的數(shù)量能相同,并分別列出的方程如下:;=10,根據(jù)兩位同學(xué)所列的方程,請(qǐng)你分別指出未知數(shù)x,y表示的意義:x表示 ;y表示 ;

(2)任選其中一個(gè)方程說明該公司購買的玻璃杯與保溫杯的數(shù)量能否相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:①﹣(﹣22__;②|32|__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程2x﹣m=x﹣2的解為x=3,則m的值為(
A.﹣5
B.5
C.﹣7
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠CAB=∠CBA=50°,O為△ABC內(nèi)一點(diǎn),∠OAB=10°,∠OBC=20°,則∠OCA的度數(shù)為(

A.55°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣1,則a的值為(
A.2
B.﹣1
C.﹣2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),DB點(diǎn)關(guān)于AC的對(duì)稱點(diǎn),反比例函數(shù)y= 的圖象經(jīng)過D點(diǎn).

(1)證明四邊形ABCD為菱形;

(2)求此反比例函數(shù)的解析式;

(3)已知在y=的圖象x>0)上一點(diǎn)N,y軸正半軸上一點(diǎn)M,且四邊形ABMN是平行四邊形,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案