【題目】如圖所示,四邊形ABCD的四個頂點A、B、C、D的坐標分別為(﹣1,1)、(﹣1,﹣3)、(5,3)、(1,3),則其對稱軸的函數(shù)表達式為

【答案】y=﹣x+2
【解析】解:易得其對稱軸為經(jīng)過AD、BC的中點的直線, ∵A、B、C、D的坐標分別為(﹣1,1)、(﹣1,﹣3)、(5,3)、(1,3),
∴AD、BC的中點坐標分別為(0,2),(2,0),
設對稱軸的函數(shù)表達式為y=kx+b(k≠0),
,
解得 ,
所以,對稱軸的函數(shù)表達式為y=﹣x+2.
所以答案是:y=﹣x+2.
【考點精析】解答此題的關鍵在于理解確定一次函數(shù)的表達式的相關知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法,以及對軸對稱的性質(zhì)的理解,了解關于某條直線對稱的兩個圖形是全等形;如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線;兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為迎接五月份全縣中考九年級體育測試,小強每天堅持引體向上鍛煉,他記錄了某一周每天做引體向上的個數(shù),如下表:
其中有三天的個數(shù)被墨汁覆蓋了,但小強已經(jīng)計算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“宜居襄陽”是我們的共同愿景,空氣質(zhì)量備受人們關注.我市某空氣質(zhì)量監(jiān)測站點檢測了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)統(tǒng)計圖共統(tǒng)計了天的空氣質(zhì)量情況;
(2)請將條形統(tǒng)計圖補充完整;;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是;
(3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質(zhì)量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設BP=x,BE=y,那么y關于x的函數(shù)圖象大致應為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2 x+c與y軸交于點A(0,﹣ ),與x軸交于B、C兩點,其對稱軸與x軸交于點D,直線l∥AB且過點D.

(1)求AB所在直線的函數(shù)表達式;
(2)請你判斷△ABD的形狀并證明你的結論;
(3)點E在線段AD上運動且與點A、D不重合,點F在直線l上運動,且∠BEF=60°,連接BF,求出△BEF面積的最小值.
解:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空,完成下列說理過程:

O是直線AB上一點,∠COD = 90°,OE平分∠BOC.

(1)如圖1,若∠ AOC = 50°,求∠DOE的度數(shù);

解:∵O是直線AB上一點,

∴∠AOC +BOC =180°.

∵∠AOC =50°,

∴∠BOC =130°.

OE平分∠BOC(已知)

∴∠COE =BOC ( ).

∴∠COE = °.

∵∠COD = 90°,∠DOE =

∴∠DOE = °.

(2)將圖1中∠ COD按順時針方向轉(zhuǎn)至圖2所示的位置,OE仍然平分∠BOC.試猜想∠AOC與∠DOE的度數(shù)之間的關系為: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:=1-

解:去分母,得_________________________________

去括號,得___________________________

移項,得___________________________

合并同類項,得__________

兩邊都除以______,得x=_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 ab、c ABC 的三邊,且滿足 a2b2c2abacbc.點 D AC邊的中點,以點 D 為頂點作∠FDE=120°,角的兩邊分別與直線 AB BC 相交于點 F 和點 E

(1)試判斷ABC 的形狀,說明理由

(2)如圖 1,將ABC 圖形中FDE=120°繞頂點 D 旋轉(zhuǎn),當兩邊 DF、DE 分別與邊 AB 和射線BC 相交于點 FE 時,三線段 BE、BF、AB 之間存在什么關系?證明你的結論

(3)如圖 2,當角兩邊 DF、DE 分別與射線 AB 和射線 BC 相交兩點 FE 時,三線段 BE、BFAB 之間存在什么關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD,EF相交于點O,BOD=45°,COF=80°.

(1)圖中有多少對對頂角(不含平角)?

(2)每一對對頂角中,各角的度數(shù)是多少?

查看答案和解析>>

同步練習冊答案