【題目】按要求畫圖,并解答問題

1)如圖,取BC邊的中點D,畫射線AD;

2)分別過點BCBEAD于點E,CFAD于點F

3BECF的位置關(guān)系是   ;通過度量猜想BECF的數(shù)量關(guān)系是   

【答案】1)詳見解析;(2)詳見解析;(3BECF,BECF

【解析】

1)根據(jù)中點的定義和射線的概念作圖即可;

2)根據(jù)垂線的概念作圖即可得;

3)根據(jù)平行線的判定以及全等三角形的判定與性質(zhì)進行解答即可得.

解:(1)如圖所示,射線AD即為所求;

2)如圖所示BECF即為所求;

3)由測量知BECFBECF,

BEAD、CFAD

∴∠BED=∠CFD90°,∴BECF,

又∵∠BDE=∠CDFBDCD,

∴△BDE≌△CDFAAS),

BECF

故答案為:BECF,BECF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DEBC于點F,連接BE,EF.

(1)CDBE相等?若相等,請證明;若不相等,請說明理由;

(2)若∠BAC=90°,求證:BF2+CD2=FD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,給出如下定義:對于點P(m,n),若點Q(2﹣m,n﹣1),則稱點Q為點P“δ.例如:點(﹣2,5)的“δ坐標為(4,4).

(1)某點的“δ的坐標是(﹣1,3),則這個點的坐標為 ;

(2)若點A的坐標是(2﹣m,n﹣1),點A“δA1點,點A1“δA2點,點A2“δA3點,,點A1的坐標是 ;點A2015的坐標是

(3)函數(shù)y=﹣x2+2x(x≤1)的圖象為G,圖象G上所有點的“δ構(gòu)成圖象H,圖象G與圖象H的組合圖形記為圖形Ю”,當點(p,q)在圖形Ю”上移動時,若k≤p≤1+2,﹣8≤q≤1,k的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠B=60°.GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結(jié)CE,DF,下列說法不正確的是( )

A. 四邊形CEDF是平行四邊形

B. 時,四邊形CEDF是矩形

C. 時,四邊形CEDF是菱形

D. 時,四邊形CEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中, , AC=BC=3, ABC折疊,使點A落在BC 邊上的點D處,EF為折痕,若AE=2,則的值為_____________.

【答案】

【解析】分析:過點DDGAB于點G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1

RtDCE中,由勾股定理求得,所以DB=RtABC中,由勾股定理得RtDGB中,由銳角三角函數(shù)求得, ;

設(shè)AF=DF=x,FG= ,RtDFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值

詳解:

如圖所示,過點DDGAB于點G.

根據(jù)折疊性質(zhì),可知AEFDEF,

∴AE=DE=2,AF=DF,CE=AC-AE=1,

RtDCE中,由勾股定理得

DB=;

RtABC中,由勾股定理得

RtDGB中, ,

設(shè)AF=DF=x,FG=AB-AF-GB=,

RtDFG ,

=

解得,

==.

故答案為: .

點睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.

型】填空
結(jié)束】
18

【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).

①當x=1.7時,[x]+(x)+[x)=6;

②當x=-2.1時,[x]+(x)+[x)=-7;

③方程4[x]+3(x)+[x)=11的解為1<x<1.5

④當-1<x<1, 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個交點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是線段上任一點,,兩點分別從同時向點運動,且點的運動速度為,點的運動速度為,運動的時間為.

1)若,

①運動后,求的長;

②當在線段上運動時,試說明;

2)如果時,,試探索的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市霧霾天氣趨于嚴重,甲商場根據(jù)民眾健康需要,代理銷售每臺進價分別為600元、560

元的 A、B 兩種型號的空氣凈化器,如表是近兩周的銷售情況:(進價、售價均保持不變,利潤=

售收入進貨成本)

銷售時段

銷售數(shù)量

銷售收入

(元)

A種型號

(臺)

B種型號

(臺)

第一周

3

2

3960

第二周

5

4

7120

(1)求 A,B 兩種型號的空氣凈化器的銷售單價;

(2)該商店計劃一次購進兩種型號的空氣凈化器共30臺,其中B型凈化器的進貨量不超過A型的2.設(shè)購進A型空氣凈化器為x臺,這30臺空氣凈化器的銷售總利潤為y.

①請寫出y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進A型、B型凈化器各多少臺,才能使銷售總利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),將一副直角三角板按如圖所示的方式擺放,其中三角形ABC為含60°角的直角三角板,三角形BDE為含45°角的直角三角板.

1)如圖1,若點DAB上,則∠EBC的度數(shù)為  ;

2)如圖2,若∠EBC170°,則∠α的度數(shù)為  ;

3)如圖3,若∠EBC118°,求∠α的度數(shù);

4)如圖3,若<∠α60°,求∠ABE-∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB兩地相距120千米,甲騎自行車以20千米/時的速度由起點A前往終點B,乙騎摩托車以40千米/時的速度由起點B前往終點A.兩人同時出發(fā),各自到達終點后停止.設(shè)兩人之間的距離為s(千米),甲行駛的時間為t(小時),則下圖中正確反映st之間函數(shù)關(guān)系的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案