如圖1,正方形ABCD和正方形CGEF的邊長(zhǎng)分別為2和3,且點(diǎn)B、C、G在同一條直線上,P是線段AE的中點(diǎn),連接PF、PD.

(1)探究PF與PD的關(guān)系;
(2)將正方形ABCD沿著CF所在的直線平移,設(shè)平移的距離為|x|(向上平移為正,向下平移為負(fù)),線段PF的長(zhǎng)為y,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.(圖2、3為操作備用圖)

解:(1)延長(zhǎng)FP交AD的延長(zhǎng)線與M,
∵正方形ABCD和正方形CGEF的邊長(zhǎng)分別是2和3,
∴FD=1,
∵EF∥AM,P是線段AE的中點(diǎn),
∴△EFP≌△AMP,
∴PM=PF,
∵AM=EF=3,AD=2,
∴DM=DF=1,
∴△DMF是等腰直角三角形,
∵PM=PF,
∴DP是△FDM的中線,
∴DP=FM=PF.

(2)如圖所示,將正方形ABCD沿著CF所在的直線平移,延長(zhǎng)FP與AD的延長(zhǎng)線相交于K,連接CP.
因?yàn)镻為AE的中點(diǎn),則BP=EP,
又因?yàn)椤螮FD=∠AKP,∠FPE=∠KPA,
所以△EFP≌△AKP,
又因?yàn)椤鱂CK為直角三角形,所以CP=CK=PK=PF,
于是∠K=60°.
FD=3-(2-|x|)=1+|x|,
于是y(|x|+1)=y•2ysin60°,
整理得y=|x|+(x為任意數(shù)).
分析:(1)延長(zhǎng)FP交AD的延長(zhǎng)線與M,再由相似三角形的判定定理求出△EFM≌△AMH,DM=DF,求出△DMF是等腰直角三角形,再由等腰三角形斜邊的中線等于斜邊的一半解答即可;
(2)作出輔助線PK、DK、DP,求∠K的度數(shù),再根據(jù)三角形的面積公式建立等式,求出y與x的函數(shù)關(guān)系式.
點(diǎn)評(píng):此題是一道動(dòng)點(diǎn)問(wèn)題,要綜合利用勾股定理和全等三角形的性質(zhì)及三角形的面積公式解答.要仔細(xì)解答第(1)題,為第(2)題提供思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在正方形網(wǎng)格上的一個(gè)△ABC.(其中點(diǎn)A、B、C均在網(wǎng)格上)
(1)作△ABC關(guān)于直線MN的軸對(duì)稱(chēng)圖形;
(2)以P點(diǎn)為一個(gè)頂點(diǎn)作一個(gè)與△ABC全等的三角形(規(guī)定點(diǎn)P與點(diǎn)B對(duì)應(yīng),另兩頂點(diǎn)都在圖中網(wǎng)格交點(diǎn)處).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶一模)如圖,等腰直角△ABC沿MN所在的直線以2cm/min的速度向右作勻速運(yùn)動(dòng).如果MN=2AC=4cm,那么△ABC和正方形XYMN重疊部分的面積S(cm2)與勻速運(yùn)動(dòng)所用時(shí)間t(min)之間的函數(shù)的大致圖象是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列問(wèn)題:
(1)當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為
垂直
垂直
,數(shù)量關(guān)系為
相等
相等

(2)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖乙,①中的結(jié)論是否仍然成立,為什么?(要求寫(xiě)出證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以Rt△ABC的斜邊和一直角邊為邊長(zhǎng)向外作正方形,面積分別為169和25,則另一直角邊的長(zhǎng)度BC為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形網(wǎng)格上有一個(gè)△ABC.
(1)利用網(wǎng)格畫(huà)出AC邊上的中線BD(不寫(xiě)畫(huà)法,寫(xiě)出結(jié)論,下同);
(2)利用網(wǎng)格畫(huà)出△ABC邊BC上的高;
(3)用直尺和圓規(guī)在右邊方框中作一個(gè)△A′B′C′與△ABC全等.

查看答案和解析>>

同步練習(xí)冊(cè)答案