【題目】正方形ABCD的邊長(zhǎng)AB=2,E為AB的中點(diǎn),F為BC的中點(diǎn),AF分別與DE、BD相交于點(diǎn)M,N,則MN的長(zhǎng)為( 。
A. B. ﹣1 C. D.
【答案】C
【解析】
首先過(guò)F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根據(jù)勾股定理求得AF,根據(jù)平行線分線段成比例定理求得OH,由相似三角形的性質(zhì)求得AM與AF的長(zhǎng),根據(jù)相似三角形的性質(zhì),求得AN的長(zhǎng),即可得到結(jié)論.
解:過(guò)F作FH⊥AD于H,交ED于O,則FH=AB=2,
∵BF=FC,BC=AD=2,
∴BF=AH=1,F(xiàn)C=HD=1,
∴AF= = = ,
∵OH∥AE,
∴ ,
∴OH= ,
∴OF=FH-OH=2- = ,
∵AE∥FO,
∴△AME∽FMO,
∴ ,
∴AM=AF= ,
∵AD∥BF,
∴△AND∽△FNB,
∴ ,
∴AN=2NF= ,
∴MN=AN-AM= .
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,,過(guò)頂點(diǎn)作射線.
(1)當(dāng)射線在外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,,().
①試證明是直角三角形;
②求線段的長(zhǎng).(用含的代數(shù)式表示)
(2)當(dāng)射線在內(nèi)部時(shí),如圖②,過(guò)點(diǎn)作于點(diǎn),連結(jié),請(qǐng)寫(xiě)出線段、、的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC中,AB=AC=BC=10厘米,M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度是1厘米/秒的速度,點(diǎn)N的速度是2厘米/秒,當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)M、N同時(shí)運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
(2)M、N同時(shí)運(yùn)動(dòng)幾秒后,可得等邊三角形△AMN?
(3)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰△AMN,如果存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一次函數(shù)(為常數(shù))的圖像位于軸下方的部分沿軸翻折到軸上方,和一次函數(shù)(為常數(shù))的圖像位于軸及上方的部分組成“”型折線,過(guò)點(diǎn)作軸的平行線,若該“”型折線在直線下方的點(diǎn)的橫坐標(biāo)滿足,則的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在中,,(如圖1),與有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論.
(2)圖2,在四邊形中,相于點(diǎn),,,,,求長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為△ABC內(nèi)一點(diǎn),E為△ABC外一點(diǎn),且∠ABC=∠DBE,∠3=∠4.
求證:(1)△ABD∽△CBE;
(2)△ABC∽△DBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,ABCD是邊長(zhǎng)為1的正方形,O是正方形的中心,Q是邊CD上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)C、D重合),直線AQ與BC的延長(zhǎng)線交于點(diǎn)E,AE交BD于點(diǎn)P.設(shè)DQ=x.
(1)填空:當(dāng)時(shí),的值為 ;
(2)如圖2,直線EO交AB于點(diǎn)G,若BG=y,求y關(guān)于x之間的函數(shù)關(guān)系式;
(3)在第(2)小題的條件下,是否存在點(diǎn)Q,使得PG∥BC?若存在,求x的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個(gè)整數(shù)點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且m為正整數(shù),求此拋物線的表達(dá)式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點(diǎn)C,點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)為D,設(shè)此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個(gè)單位長(zhǎng)度后與直線CD有公共點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.
(1)請(qǐng)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?
(3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com