【題目】如圖所示,已知△ABC中,AB=AC=BC=10厘米,M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度是1厘米/秒的速度,點(diǎn)N的速度是2厘米/秒,當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)M、N同時(shí)運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
(2)M、N同時(shí)運(yùn)動(dòng)幾秒后,可得等邊三角形△AMN?
(3)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰△AMN,如果存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間?
【答案】(1)10秒;(2)秒;(3)秒.
【解析】
(1)首先設(shè)點(diǎn)M、N運(yùn)動(dòng)x秒后,M、N兩點(diǎn)重合,表示出M,N的運(yùn)動(dòng)路程,N的運(yùn)動(dòng)路程比M的運(yùn)動(dòng)路程多10cm,列出方程求解即可;
(2)根據(jù)題意設(shè)點(diǎn)M、N運(yùn)動(dòng)t秒后,可得到等邊三角形△AMN,然后表示出AM,AN的長(zhǎng),由于∠A等于60°,所以只要AM=AN三角形ANM就是等邊三角形;
(3)首先假設(shè)△AMN是等腰三角形,可證出△ACM≌△ABN,可得CM=BN,設(shè)出運(yùn)動(dòng)時(shí)間,表示出CM,NB的長(zhǎng),列出方程,可解出未知數(shù)的
(1)設(shè)點(diǎn)M、N運(yùn)動(dòng)x秒后,M、N兩點(diǎn)重合,
x+10=2x,解得x=10;
(2)設(shè)點(diǎn)M、N運(yùn)動(dòng)t秒后,可得到等邊三角形△AMN,如圖①,
AM=t,AN=AB–BN=10–2t,
∵三角形△AMN是等邊三角形,
∴t=10–2t,解得t=,
∴點(diǎn)M、N運(yùn)動(dòng)秒后,可得到等邊三角形△AMN.
(3)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),可以得到以MN為底邊的等腰三角形,
由(1)知10秒時(shí)M、N兩點(diǎn)重合,恰好在點(diǎn)C處,
如圖②,假設(shè)△AMN是等腰三角形,
∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,
∵AB=BC=AC,∴△ACB是等邊三角形,∴∠C=∠B,
在△ACM和△ABN中,
∵,
∴△ACM≌△ABN(AAS),
∴CM=BN,
設(shè)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),M、N運(yùn)動(dòng)的時(shí)間為y秒時(shí),△AMN是等腰三角形,
∴CM=y–10,NB=30–2y,CM=NB,
y–10=30–2y,
解得:y=.故假設(shè)成立.
∴當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能得到以MN為底邊的等腰△AMN,此時(shí)M、N運(yùn)動(dòng)的時(shí)間為秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,△A′BC與△ABC關(guān)于BC所在直線對(duì)稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長(zhǎng)交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)△A′EF為直角三角形時(shí),AB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點(diǎn)E.若△A'ED為直角三角形,則AD的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,垂直的角平分線于,為的中點(diǎn),則圖中兩個(gè)陰影部分面積之差的最大值為( )
A.1.5B.3C.4.5D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,已知△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,4)、(﹣1,2),點(diǎn)B坐標(biāo)為(﹣2,1).
(1)請(qǐng)?jiān)趫D中正確地作出平面直角坐標(biāo)系,畫(huà)出點(diǎn)B,并連接AB、BC;
(2)將△ABC沿x軸正方向平移5個(gè)單位長(zhǎng)度后,再沿x軸翻折得到△DEF,畫(huà)出△DEF;
(3)點(diǎn)P(m,n)是△ABC的邊上的一點(diǎn),經(jīng)過(guò)(2)中的變化后得到對(duì)應(yīng)點(diǎn)Q,直接寫(xiě)出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,線段AB的端點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫(huà)出以AB為一條直角邊的等腰直角△ABC,頂點(diǎn)C在小正方形的頂點(diǎn)上;
(2)在方格紙中畫(huà)出△ABC的中線BD,將線段DC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CD′,畫(huà)出旋轉(zhuǎn)后的線段CD′,連接BD′,直接寫(xiě)出四邊形BDCD′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,和的平分線交于點(diǎn),過(guò)點(diǎn)作交于,光于,若、周長(zhǎng)分別為和.
(1)求證:;
(2)線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com