【題目】已知:ABC中,且∠BAC70°,ADABC的角平分線,點(diǎn)EAC邊上的一點(diǎn),點(diǎn)F為直線AB上的一動(dòng)點(diǎn),連結(jié)EF,直線EF與直線AD交于點(diǎn)P,設(shè)∠AEFα°

(1)如圖①,若 DE//AB,則①∠ADE的度數(shù)是_______;

②當(dāng)∠DPE=∠DEP時(shí),∠AEF= _____:當(dāng)∠PDE=∠PED,∠AEF=_______;

(2)如圖②,若DEAC,則是否存在這樣的α的值,使得DPE中有兩個(gè)相等的角?若存在求出α的值;若不存在,說(shuō)明理由

【答案】1)①35°;②37.5,75;(227.5°或20°或35°.

【解析】

1)①利用平行線的性質(zhì),可知∠ADE=BAD,由此即可解決問(wèn)題;

②利用三角形的內(nèi)角和定理以及三角形的外角的性質(zhì)解決問(wèn)題即可;

2)用分類(lèi)討論的思想思考問(wèn)題即可;

解:(1)①∵∠BAC=70°,AD是△ABC的角平分線,

∴∠BAD=BAC=35°,

DEAB

∴∠ADE=BAD=35°,

故答案為35°.

②在△DPE中,∵∠ADE=35°,

∴∠DPE=PED=180°-35°)=72.5°,

∵∠DPE=AEP+DAE,

∴∠AEF=72.5°-35°=37.5°;

∵當(dāng)∠PDE=PED時(shí),∠DPE=70°,

∴∠AEF=DPE-DAE=75°.

故答案為37.5,75

2)在RtADE中,∠ADE=90°-35°=55°.

①當(dāng)DP=DE時(shí),∠DPE=62.5°,∠AEF=DPE-DAC=62.5°-35°=27.5°.

②當(dāng)EP=ED時(shí),∠EPD=ADE=55°,∠AEF=DPE-DAC=55°-35°=20°.

③當(dāng)DP=PE時(shí),∠EPD=180°-2×55°=70°,∠AEF=DPE-DAC=70°-35°=35°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長(zhǎng).

)若⊙沿軸向右以每秒個(gè)單位長(zhǎng)度的速度平移,菱形沿軸向左以每秒個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組對(duì)角是直角的四邊形叫做“準(zhǔn)矩形”;有兩組鄰邊(不重復(fù))相等的四邊形叫做“準(zhǔn)菱形”.如圖①,在四邊形ABCD中,若∠A=∠C90°,則四邊形ABCD是“準(zhǔn)矩形”;如圖②,在四邊形ABCD中,若ABADBCDC,則四邊形ABCD是“準(zhǔn)菱形”.

1)如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)分別在圖③、圖④中畫(huà)出“準(zhǔn)矩形”ABCD和“準(zhǔn)菱形”ABCD′.(要求:D、D′在格點(diǎn)上);

2)下列說(shuō)法正確的有 ;(填寫(xiě)所有正確結(jié)論的序號(hào))

一組對(duì)邊平行的“準(zhǔn)矩形”是矩形;一組對(duì)邊相等的“準(zhǔn)矩形”是矩形;

一組對(duì)邊相等的“準(zhǔn)菱形”是菱形;一組對(duì)邊平行的“準(zhǔn)菱形”是菱形.

3)如圖,在△ABC中,∠ABC90°,以AC為一邊向外作“準(zhǔn)菱形”ACEF,且ACECAFEF,AECF交于點(diǎn)D

若∠ACE=∠AFE,求證:“準(zhǔn)菱形”ACEF是菱形;

的條件下,連接BD,若BD,∠ACB15°,∠ACD30°,請(qǐng)直接寫(xiě)出四邊形ACEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片ABCD折疊起來(lái),使其對(duì)角頂點(diǎn)AC重合,DG重合.若長(zhǎng)方形的長(zhǎng)BC8,寬AB4,求:

1CF的長(zhǎng);

2)求三角形GED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商人經(jīng)營(yíng)甲、乙兩種商品,每件甲種商品的利潤(rùn)率為40%,每件乙種商品的利潤(rùn)率為60%,當(dāng)售出的乙種商品比售出的甲種商品的件數(shù)多50%時(shí),這個(gè)商人得到的總利潤(rùn)率為50%;那么當(dāng)售出的甲、乙兩種商品的件數(shù)相等時(shí),這個(gè)商人的總利潤(rùn)率是____(利潤(rùn)率=利潤(rùn)÷成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

1)如圖①,在菱形ABCD中,∠ABC=120°,點(diǎn)M,N分別在AD,CD上,且∠MBN=60°,試判斷四邊形DMBN是否為“等鄰邊四邊形”?請(qǐng)說(shuō)明理由.

2)如圖②,在矩形ABCD中,AB=8,BC=12.5,點(diǎn)EBC上,且BE=6,在矩形ABCD內(nèi)或邊上,確定一點(diǎn)P,使四邊形ABEP為最大面積的“等鄰邊四邊形”,若能實(shí)現(xiàn),請(qǐng)求出最大面積;若不能實(shí)現(xiàn),說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開(kāi)設(shè)了A籃球、B足球、C跳繩、D羽毛球四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的對(duì)象必須選擇而且只能在四種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫(huà)完整)

1)這次調(diào)查中,一共調(diào)查了________名學(xué)生

2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)若有3名喜歡跳繩的學(xué)生1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)為正方形的邊上任意一點(diǎn),在正方形內(nèi)部做等腰直角

1)如圖1,若,則_________(請(qǐng)直接寫(xiě)出答案)

2)作關(guān)于的對(duì)稱點(diǎn),連接于點(diǎn)

①補(bǔ)全圖形1;

②證明:四邊形ECHF為平行四邊形.

3)在(2)的條件下,連接,請(qǐng)直接寫(xiě)出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校獎(jiǎng)勵(lì)給王偉和李麗上海世博園門(mén)票共兩張,其中一張為指定日門(mén)票,另一張為普通日門(mén)票。王偉和李麗分別轉(zhuǎn)動(dòng)下圖的甲、乙兩個(gè)轉(zhuǎn)盤(pán)(轉(zhuǎn)盤(pán)甲被二等分、轉(zhuǎn)盤(pán)乙被三等分)確定指定日門(mén)票的歸屬,在兩個(gè)轉(zhuǎn)盤(pán)都停止轉(zhuǎn)動(dòng)后,若指針?biāo)傅膬蓚(gè)數(shù)字之和為 偶數(shù),則王偉獲得指定日門(mén)票;若指針?biāo)傅膬蓚(gè)數(shù)字之和為奇數(shù),則李麗獲得指定日門(mén)票;若指針指向分隔線,則重新轉(zhuǎn)動(dòng)。你認(rèn)為這個(gè)方法公平嗎?請(qǐng)畫(huà)樹(shù)狀圖或列表,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案