精英家教網 > 初中數學 > 題目詳情
5.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DE保持水平,并且邊DE與點B在同一條直線上.已知紙板的兩條邊DE=70cm,EF=30cm,測得AC=$\frac{7}{8}$m,BD=9m,求樹高AB.

分析 先判定△DEF和△DBC相似,然后根據相似三角形對應邊成比例列式求出BC的長,再加上AC即可得解.

解答 解:在直角△DEF中,DE=70cm,EF=30cm,
則由勾股定理得到DF=$\sqrt{D{E}^{2}+E{F}^{2}}$=$\sqrt{7{0}^{2}+3{0}^{2}}$=10$\sqrt{58}$.
在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,
∴△DEF∽△DCB,
∴$\frac{DF}{DB}$=$\frac{EF}{BC}$,
又∵EF=30cm,BD=9m,
∴BC=$\frac{EF•DB}{DF}$=$\frac{30×9}{10\sqrt{58}}$=$\frac{27\sqrt{58}}{58}$(m)
∵AC=$\frac{7}{8}$m,
∴AB=AC+BC=$\frac{7}{8}$+$\frac{27\sqrt{58}}{58}$=$\frac{203+108\sqrt{58}}{232}$,即樹高$\frac{203+108\sqrt{58}}{232}$m.

點評 本題考查了相似三角形的應用,主要利用了相似三角形對應邊成比例的性質,比較簡單,判定出△DEF和△DBC相似是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

13.已知反比例函數的圖象上有一點P(a,b),且a+b=3,請寫出一個滿足上述條件的反比例函數解析式:y=$\frac{2}{x}$.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

16.火車票上的車次號有兩個意義,一是數字越小表示車速快,1~98次為特快列車,101~198次為直快列車,301~398次為普快列車,401~498次為普客列車;二是單數與雙數表示不同的行駛方向,其中單數表示從北京開出,雙數表示開往北京.根據以上規(guī)定,北京開往杭州的某一直快列車的車次號可能是( 。
A.20B.119C.120D.319

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

13.如圖,已知∠MON=90°,A是∠MON內部的一點,過點A作AB⊥ON,垂足為點B,AB=3厘米,OB=4厘米,動點E,F同時從O點出發(fā),點E以1.5厘米/秒的速度沿ON方向運動,點F以2厘米/秒的速度OM方向運動,EF與OA交于點C,連接AE,當點E到達點B時,點F隨之停止運動.設運動時間為t秒(t>0)
(1)當t=1秒時,△EOF與△ABO是否相似?請說明理由;
(2)在運動過程中,不論t取何值,總有EF⊥OA,為什么?
(3)連接AF,在運動過程中,是否存在某一時刻t,使得S△AEF=$\frac{1}{2}$S四邊形AEOF
若存在,請求出此時t的值:若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

20.如圖,一個花壇由兩個半圓和一個長方形組成,已知長方形的長為a米,寬為b米.
(1)用代數式表示該花壇的面積S;
(2)當S=5200平方米,b=40米時,求a的值.(π≈3)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

10.分解因式
(1)x3-x
(2)3m2n-12mn+12n.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

17.問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點,連結AP、BP,求AP+$\frac{1}{2}$BP的最小值.
(1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點D,使CD=1,則有$\frac{CD}{CP}$=$\frac{CP}{CB}$=$\frac{1}{2}$,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴$\frac{PD}{BP}$=$\frac{1}{2}$,∴PD=$\frac{1}{2}$BP,∴AP+$\frac{1}{2}$BP=AP+PD.
請你完成余下的思考,并直接寫出答案:AP+$\frac{1}{2}$BP的最小值為$\sqrt{37}$.
(2)自主探索:在“問題提出”的條件不變的情況下,$\frac{1}{3}$AP+BP的最小值為$\frac{2}{3}\sqrt{37}$.
(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點P是$\widehat{CD}$上一點,求2PA+PB的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

14.如圖1,已知MN是⊙O的切線,且點為點C,AB是⊙O的弦,且AB∥MN.
(1)求證:AC=BC;
(2)如圖2,點D、E分別為$\widehat{AB}$、$\widehat{AC}$上的點,且$\widehat{DB}$=$\widehat{AE}$,連接BE,CD,弦CD分別與BE、AB相交于點G、K.求證:∠EGC=∠A;
(3)如圖3,在(2)條件下,連接BD、DA,弦DA的延長線與弦CE的延長線相交于點F,若AF=3$\sqrt{10}$,BC=10$\sqrt{2}$,EC=5$\sqrt{2}$,求線段BK的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

15.如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從點A出發(fā),以每秒1cm的速度沿AC運動;同時點Q從點C出發(fā),以每秒2cm的速度沿CB運動,當Q到達點B時,點P同時停止運動.
(1)求運動幾秒時△PCQ的面積為5cm2?
(2)△PCQ的面積能否等于10cm2?若能,求出運動時間,若不能,說明理由.

查看答案和解析>>

同步練習冊答案