【題目】在所給的11×10方格中,每個小正方形的邊長都是1,按要求畫出四邊形,使它的四個頂點都在小正方形的頂點上.
(1)在圖1中畫出周長為20的菱形ABCD(非正方形);
(2)在圖2中畫出鄰邊比為1:2,面積為40的矩形EFGH,并直接寫出矩形EFGH對角線的長.
【答案】(1)詳見解析;(2)10
【解析】
(1)根據(jù)周長為20可得菱形的邊長為5,因為是非正方形,所以菱形不在格線上,由勾股定理可得兩條直角邊為3和4,即可畫出圖形;(2)根據(jù)面積為40,鄰邊比為1:2可得矩形的長和寬分別為4和2,以長和寬為斜邊的直角三角形的直角邊長分別為4、8和2、4,據(jù)此即可畫圖圖形;根據(jù)勾股定理即可得出對角線的長.
(1)如圖所示:以3、4為直角邊畫出斜邊AB,則AB=5,同理畫出其它三條邊,則菱形ABCD即為所求.
(2)∵矩形EFGH的面積=40,長:寬=2:1,
∴長=4,寬=2,
∴以長和寬為斜邊的直角三角形的直角邊長分別為4、8和2、4,
據(jù)此即可畫圖圖形,如圖所示:
∴其對角線EG=FH==10,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,AC是弦,OC=4,∠OAC=60°.
(1)求∠AOC的度數(shù);
(2)如圖,一動點M從A點出發(fā),在⊙O上按逆時針方向運動,當(dāng)S△MAO=S△CAO時,求動點M所經(jīng)過的弧長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)的圖象過點(1,﹣2).
(1)求此正比例函數(shù)的解析式;
(2)若一次函數(shù)圖象是由(1)中的正比例函數(shù)的圖象平移得到的,且經(jīng)過點(1,2),求此一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點E,△PCD的周長為12,∠APB=60°.
求:(1)PA的長;
(2)∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對一批西裝質(zhì)量抽檢情況如下表:
(1)從這批西裝中任選一套,是次品的概率是多少?
(2)若要銷售這批西裝2000件,為了方便購買了次品西裝的顧客前來調(diào)換,至少應(yīng)進多少件西裝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點坐標(biāo);
(2)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點坐標(biāo);
(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應(yīng)點D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是置于水平地面上的一個球形儲油罐,小敏想測量它的半徑、在陽光下,他測得球的影子的最遠點A到球罐與地面接觸點B的距離是10米(如示意圖,AB=10米);同一時刻,他又測得豎直立在地面上長為1米的竹竿的影子長為2米,那么,球的半徑是________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C為圓心,r為半徑的圓與AB有何位置關(guān)系?(1) r=2cm;(2) r=2.4cm;(3) r=3cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx﹣3交x軸于點A(﹣3,0)、B(1,0),在y軸上有一點E(0,1),連接AE.
(1)求二次函數(shù)的表達式;
(2)若點D為拋物線在x軸負半軸下方的一個動點,求△ADE面積的最大值;
(3)拋物線對稱軸上是否存在點P,使△AEP為等腰三角形?若存在,請直接寫出所有P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com