已知二次函數(shù)y=的圖象經(jīng)過點(0,5).
(1)求m的值,并寫出該二次函數(shù)的關(guān)系式;
(2)求出二次函數(shù)圖象的頂點坐標(biāo)、對稱軸.
【答案】分析:(1)把點(0,5)代入解析式就可以求出m的值,從而也可以得出解析式;
(2)將二次函數(shù)的解析式轉(zhuǎn)化為頂點式就可以求出頂點坐標(biāo)、對稱軸.
解答:解:(1)∵y=的圖象經(jīng)過點(0,5).
∴5=m2+1,
∴m=±2.
∵m+2≠0,
∴m≠-2.
∴m=2,
∴二次函數(shù)的關(guān)系式為:y=x2+6x+5

(2)∵二次函數(shù)的關(guān)系式為:y=x2+6x+5
∴y=(x+3)2-4,
∴二次函數(shù)圖象的頂點坐標(biāo)為(-3,-4)、對稱軸為:直線x=-3.
點評:本題考查了運(yùn)用待定系數(shù)法求二次函數(shù)的解析式的運(yùn)用,利用二次函數(shù)的性質(zhì)求拋物線的頂點坐標(biāo)和對稱軸的運(yùn)用.解答本題求出拋物線的解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y1的圖象的頂點是A(2,-3),且經(jīng)過點(1,0).
(1)求二次函數(shù)y1的解析式;
(2)說出二次函數(shù)y1與二次函數(shù)y2=-(x-1)(x-3)的三個相同點與三個不同點;
(3)設(shè)拋物線y2的頂點為B、若線段AB的垂直平分線交拋物線y1于點C,交拋物線y2于點D,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省鹽城市中考數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=的圖象經(jīng)過點A(2,0)和點B(1,-),直線l經(jīng)過拋物線的頂點且與y軸垂直,垂足為Q.

(1)求該二次函數(shù)的表達(dá)式;
(2)設(shè)拋物線上有一動點P從點B處出發(fā)沿拋物線向上運(yùn)動,其縱坐標(biāo)y1隨時間t(t≥0)的變化規(guī)律為y1=-+2t.現(xiàn)以線段OP為直徑作⊙C.
①當(dāng)點P在起始位置點B處時,試判斷直線l與⊙C的位置關(guān)系,并說明理由;在點P運(yùn)動的過程中,直線l與⊙C是否始終保持這種位置關(guān)系?請說明你的理由.
②若在點P開始運(yùn)動的同時,直線l也向上平行移動,且垂足Q的縱坐標(biāo)y2隨時間t的變化規(guī)律為y2=-1+3t,則當(dāng)t在什么范圍內(nèi)變化時,直線l與⊙C相交?此時,若直線l被⊙C所截得的弦長為a,試求a2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣西柳州市城中區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知二次函數(shù)y=的圖象與y軸交于點A,與x軸交于B、C兩點,其對稱軸與x軸交于點D,連接AC.
(1)點A的坐標(biāo)為______,點C的坐標(biāo)為______;
(2)線段AC上是否存在點E,使得△EDC為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;
(3)點P為x軸上方的拋物線上的一個動點,連接PA、PC,若所得△PAC的面積為S,則S取何值時,相應(yīng)的點P有且只有2個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•徐州)如圖,已知二次函數(shù)y=的圖象與y軸交于點A,與x軸交于B、C兩點,其對稱軸與x軸交于點D,連接AC.
(1)點A的坐標(biāo)為______,點C的坐標(biāo)為______;
(2)線段AC上是否存在點E,使得△EDC為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;
(3)點P為x軸上方的拋物線上的一個動點,連接PA、PC,若所得△PAC的面積為S,則S取何值時,相應(yīng)的點P有且只有2個?

查看答案和解析>>

同步練習(xí)冊答案