【題目】三角形的內(nèi)切圓的切點(diǎn)將該圓周分為5:9:10三條弧,則此三角形的最小的內(nèi)角為 .
【答案】30°
【解析】解:
連接OF、OE、OD,設(shè)弧ED:弧EF:弧FD=5:9:10,
則∠EOF= ×360°=135°,∠EOD= ×360°=75°,∠FOD= ×360°=150°,
∵⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為E、D、F,
∴∠AFO=∠AEO=∠CEO=∠CDO=∠BDO=∠BFO=90°,
∴∠FOD對(duì)的角B最小,即∠B=180°﹣150°=30°,
所以答案是:30°.
【考點(diǎn)精析】關(guān)于本題考查的多邊形內(nèi)角與外角和圓心角、弧、弦的關(guān)系,需要了解多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°;在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E,F分別是三角形ABC的邊BC,CA,AB上的點(diǎn). 請(qǐng)你從以下四個(gè)關(guān)系
∠FDE=∠A 、∠BFD=∠DEC 、DE∥BA、DF∥CA中選擇三個(gè)適當(dāng)?shù)靥顚懺谙旅娴臋M線上,使其形成一個(gè)真命題,并有步驟的證明這個(gè)命題(證明過(guò)程中注明推理根據(jù)).
如果 , ,
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),國(guó)家經(jīng)濟(jì)實(shí)力和國(guó)民生活水平不斷提高,但經(jīng)濟(jì)發(fā)展的同時(shí)對(duì)環(huán)境產(chǎn)生了較大的污染,環(huán)境治理已刻不容緩.某市為加快環(huán)境治理,引進(jìn)新的垃圾處理設(shè)備,計(jì)劃對(duì)該市2017年第一季度沿河收集的6000噸垃圾進(jìn)行集中處理.
(1)寫出處理完這批垃圾所用時(shí)間y(天)關(guān)于日均垃圾處理量x(噸)的函數(shù)關(guān)系式.
(2)該市垃圾實(shí)際處理過(guò)程中由于提高效能,日均垃圾處理量比原計(jì)劃多20%,結(jié)果比原計(jì)劃少用5天處理完全部垃圾,求原計(jì)劃日均垃圾處理量為多少噸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C,M是BC的中點(diǎn),P是A′B′的中點(diǎn),連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,且AC=16cm,BD=12cm;點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動(dòng),速度為2cm/s;點(diǎn)Q從點(diǎn)C出發(fā),沿CO方向勻速運(yùn)動(dòng),速度為1cm/s;若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).過(guò)點(diǎn)Q作MQ∥BC,交BD于點(diǎn)M,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<5).解答下列問(wèn)題:
(1)求t為何值時(shí),線段AQ、線段PM互相平分.
(2)設(shè)四邊形APQM的面積為Scm2 , 求S關(guān)于t的函數(shù)關(guān)系式;設(shè)菱形ABCD的面積為SABCD , 求是否存在一個(gè)時(shí)刻t,使S:SABCD=2:5?如果存在,求出t,如果不存在,請(qǐng)說(shuō)明理由.
(3)求時(shí)刻t,使得以M、P、Q為頂點(diǎn)的三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,⊙O交BC于D,過(guò)D作⊙O的切線DE交AC于E,且DE⊥AC,由上述條件,你能推出的正確結(jié)論有:(要求:不再標(biāo)注其他字母,找結(jié)論的過(guò)程中所連輔助線不能出現(xiàn)在結(jié)論中,不寫推理過(guò)程,至少寫出4個(gè)結(jié)論,結(jié)論不能類同).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC的角平分線BD、CE相交于點(diǎn)P.
(1)如果∠A=70°,求∠BPC的度數(shù);
(2)如圖②,過(guò)P點(diǎn)作直線MN∥BC,分別交AB和AC于點(diǎn)M和N,試求∠MPB+∠NPC的度數(shù)(用含∠A的代數(shù)式表示);
① ② ③ ④
在(2)的條件下,將直線MN繞點(diǎn)P旋轉(zhuǎn).
(ⅰ)當(dāng)直線MN與AB、AC的交點(diǎn)仍分別在線段AB和AC上時(shí),如圖③,試探索∠MPB、∠NPC、∠A三者之間的數(shù)量關(guān)系,并說(shuō)明你的理由;
(ⅱ)當(dāng)直線MN與AB的交點(diǎn)仍在線段AB上,而與AC的交點(diǎn)在AC的延長(zhǎng)線上時(shí),如圖④,試問(wèn)(ⅰ)中∠MPB、∠NPC、∠A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)說(shuō)明你的理由;若不成立,請(qǐng)給出∠MPB、∠NPC、∠A三者之間的數(shù)量關(guān)系,并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要用12米長(zhǎng)的木條,做一個(gè)有一條橫擋的矩形窗戶(如圖),怎樣設(shè)計(jì)窗口的高和寬的長(zhǎng)度,才能使這個(gè)窗戶透進(jìn)的光線最多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D為∠BAC邊AC上一點(diǎn),點(diǎn)O為邊AB上一點(diǎn),AD=DO.以O(shè)為圓心,OD長(zhǎng)為半徑作半圓,交AC于另一點(diǎn)E,交AB于點(diǎn)F、G,連接EF.若∠BAC=22°,則∠EFG=°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com