【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時,求劣弧AC的長.
【答案】
(1)解:∵∠ABC與∠D都是弧AC所對的圓周角,
∴∠ABC=∠D=60°
(2)解:∵AB是⊙O的直徑,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切線
(3)解:如圖,連接OC,
∵∠ABC=60°,
∴∠AOC=120°,
∴劣弧AC的長為 .
【解析】(1)由圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠ABC的度數(shù);(2)由AB是⊙O的直徑,根據(jù)半圓(或直徑)所對的圓周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,則可得AE是⊙O的切線;(3)首先連接OC,易得△OBC是等邊三角形,則可得∠AOC=120°,由弧長公式,即可求得劣弧AC的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點C與圓心O重合,則月牙形(圖中實線圍成的部分)的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)2008~2012年杭州市實現(xiàn)地區(qū)生產(chǎn)總值(簡稱GDP,單位:億元)統(tǒng)計圖所提供的信息,下列判斷正確的是( )
A.2010~2012年杭州市每年GDP增長率相同
B.2012年杭州市的GDP比2008年翻一番
C.2010年杭州市的GDP未達(dá)到5500億元
D.2008~2012年杭州市的GDP逐年增長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,對稱中心為點P,點F為BC邊上一個動點,點E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關(guān)于直線AC成軸對稱,設(shè)它們的面積和為S1 .
(1)求證:∠APE=∠CFP;
(2)設(shè)四邊形CMPF的面積為S2 , CF=x, .
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
②當(dāng)圖中兩塊陰影部分圖形關(guān)于點P成中心對稱時,求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人駕車從鄉(xiāng)村進(jìn)城.各時間段的行駛速度如圖所示.當(dāng)時,其行駛路程與時間之間的函數(shù)表達(dá)式是________,當(dāng)時,其行駛路程與時間之間的函數(shù)表達(dá)式是________,當(dāng)時,其行駛路程與時間之間的函數(shù)表達(dá)式是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有順次的四條射線:OE、OC、OD、OF、OE平分∠AOC,OF平分∠DOB.
(1)若∠AOB=160°,∠COD=40°,求∠EOF的度數(shù);
(2)若∠AOB=a,∠COD=β,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號min{a,b}的含義為:當(dāng)a≥b時min{a,b}=b;當(dāng)a<b時min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是( )
A.
B.
C.1
D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長方形零件PQMN,使長方形PQMN的邊QM在BC上,其余兩個頂點P,N分別在AB,AC上,求這個長方形零件PQMN面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣x+2與x軸,y軸分別交于點A,B,在y軸上有一點C(0,4),動點M從點A出發(fā)以毎秒1個単位長度的速度沿x軸向左運(yùn)動,設(shè)運(yùn)動的時間為t秒.
(1)求點A的坐標(biāo);
(2)請從A,B兩題中任選一題作答.
A.求△COM的面積S與時間t之間的函數(shù)表達(dá)式;
B.當(dāng)△ABM為等腰三角形時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com