年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
a+b |
c |
2 |
a+b |
c |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河北省唐山市玉田縣八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
『?jiǎn)栴}情境』勾股定理是一條古老的數(shù)學(xué)定理,它有多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行了證明.著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其它星球“人”進(jìn)行第一次“談話”的語言.
『定理表述』請(qǐng)你根據(jù)圖1中的直角三角形敘述勾股定理(用文字及符號(hào)語言敘述).
『嘗試證明』以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖2),請(qǐng)你利用圖2,驗(yàn)證勾股定理.
『知識(shí)拓展』利用圖2中的直角梯形,我們可以證明<.其證明步驟如下:
∵BC=a+b,AD= ,
又在直角梯形ABCD中,BC AD(填大小關(guān)系),
即 .
∴<.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆湖北省鄂州市八年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
[問題情境] 勾股定理是一條古老的數(shù)學(xué)定理,它有很多證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”帶到其他星球作為地球人與其他星球“人”進(jìn)行第一次“談話”的語言。
[定理表述] 請(qǐng)你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號(hào)語言敘述);
[嘗試證明] 以圖(1)中的直角三角形為基礎(chǔ)可以構(gòu)造出以a、b為底,以a+b為高的直角梯形如圖(2)。請(qǐng)你利用圖(2)驗(yàn)證勾股定理;
[知識(shí)拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:
∵BC=a+b,AD= .
又∵在直角梯形ABCD中有直角腰BC 斜腰AD(填“>”,“<”或“=”),即 。
∴
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com