【題目】如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點(diǎn)A(1,2).直線lx軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求ABC的面積?

【答案】解:(1)將A(1,2)代入一次函數(shù)解析式得:k+1=2,即k=1,一次函數(shù)解析式為y=x+1。

將A(1,2)代入反比例解析式得:m=2,

反比例解析式為

(2)設(shè)一次函數(shù)與x軸交于D點(diǎn),過(guò)點(diǎn)A作AE垂直于x軸于點(diǎn)E,

在y=x+1中,令y=0,求出x=﹣1,即OD=1。

A(1,2)AE=2,OE=1

N(3,0),到B橫坐標(biāo)為3。

將x=3代入一次函數(shù)得:y=4,

將x=3代入反比例解析式得:,

B(3,4),即ON=3,BN=4,C(3,),即CN=,

。

解析(1)將A坐標(biāo)代入一次函數(shù)解析式中求出k的值,確定出一次函數(shù)解析式,將A坐標(biāo)代入反比例函數(shù)解析式中求出m的值,即可確定出反比例解析式;

(2)設(shè)一次函數(shù)與x軸交點(diǎn)為D點(diǎn),過(guò)A作AE垂直于x軸,由ABC面積=BDN面積-ADE面積-梯形AECN面積,求出即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠BCA=90°,ACBC,點(diǎn)DBC的中點(diǎn),點(diǎn)F在線段AD上,DFCD,BFCAE點(diǎn),過(guò)點(diǎn)ADA的垂線交CF的延長(zhǎng)線于點(diǎn)G,下列結(jié)論:CF2EFBF;②AG=2DC;③AEEF;④AFECEFEB.其中正確的結(jié)論有(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCDAC平分∠BAD,ADC=ACB=90,EAB的中點(diǎn),ACDE交于點(diǎn)F

(1)求證: =AB·AD

(2)求證:CE//AD;

(3)AD=6, AB=8.求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形 ABCD 的邊長(zhǎng)為 10EBC 邊上運(yùn)動(dòng),取 DE 的中點(diǎn) GEG 繞點(diǎn) E 順時(shí)針旋轉(zhuǎn)90°得 EF,問(wèn) CE 長(zhǎng)為多少時(shí),A、C、F 三點(diǎn)在一條直線上( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c經(jīng)過(guò)A(﹣6,0)、B(2,0)、C(0,6)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過(guò)點(diǎn)Py軸的垂線,垂足為點(diǎn)E,連接AE

(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)為(x,y),PAE的面積為S,求Sx之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)過(guò)點(diǎn)P(﹣3,m)作x軸的垂線,垂足為點(diǎn)F,連接EF,把PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P,求出P的坐標(biāo).(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為2的⊙O中,弦AB=2,O上存在點(diǎn)C,若AC=2,則∠BAC的度數(shù)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=4cm,點(diǎn)EAC邊上一點(diǎn),且AE=3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x s.作∠EPF=90°,與邊BC相交于點(diǎn)F.設(shè)BF長(zhǎng)為ycm.

(1)當(dāng)x s時(shí),EPPF;

(2)求在點(diǎn)P運(yùn)動(dòng)過(guò)程中,yx之間的函數(shù)關(guān)系式;

(3)點(diǎn)F運(yùn)動(dòng)路程的長(zhǎng)是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根.

(1)是否存在實(shí)數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說(shuō)明理由;

(2)求使﹣2的值為整數(shù)的實(shí)數(shù)k的整數(shù)值;

(3)若k=﹣2,λ=,試求λ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為27m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度 a12m),圍成中間隔有一道籬笆的矩形花圃,設(shè)花圃的寬為AB=xm,面積為Sm2

(1) S x 的函數(shù)關(guān)系式;

(2)求矩形花圃的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案