【題目】如圖,在矩形中,點在對角線上,過點作,分別交,于點,,連結,.若,,圖中陰影部分的面積為,則矩形的周長為_______.
【答案】
【解析】
作PM⊥AD于M,交BC于N,進而得到四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,繼而可證明S△PEB=S△PFD,然后根據勾股定理及完全平方公式可求,,進而求出矩形的周長.
解:作PM⊥AD于M,交BC于N,
則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,
∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,
S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
∴S△DFP=S△PBE,且S△DFP+S△PBE=9,
∴,且,
∴,
即,.
∵,,
∴,,
∴,
∴矩形ABCD的周長= 2=.
故答案為:.
科目:初中數學 來源: 題型:
【題目】知識鏈接:
“轉化、化歸思想”是數學學習中常用的一種探究新知、解決問題的基本的數學思想方法,通過“轉化、化歸”通?梢詫崿F(xiàn)化未知為已知,化復雜為簡單,從而使問題得以解決.
(1)問題背景:已知:△ABC.試說明:∠A+∠B+∠C=180°.
問題解決:(填出依據)
解:(1)如圖①,延長AB到E,過點B作BF∥AC.
∵BF∥AC(作圖)
∴∠1=∠C( )
∠2=∠A( )
∵∠2+∠ABC+∠1=180°(平角的定義)
∴∠A+∠ABC+∠C=180°(等量代換)
小結反思:本題通過添加適當的輔助線,把三角形的三個角之和轉化成了一個平角,利用平角的定義,說明了數學上的一個重要結論“三角形的三個內角和等于180°.”
(2)類比探究:請同學們參考圖②,模仿(1)的解決過程試說明“三角形的三個內角和等于180°”
(3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內角之和∠A+∠B+∠C+∠D+∠E= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示AB為⊙O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.
(1)求證:CE∥BF;
(2)若BD=2,且EA:EB:EC=3:1:,求△BCD的面積(注:根據圓的對稱性可知OC⊥AB).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實驗數據顯示,一般成人喝半斤低度白酒后,1.5時內其血液中酒精含量y(毫克/百毫升)與時間x (時)的關系可近似地用二次函數y=-200x2+400x刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(k>0)刻畫(如圖所示).
(1)根據上述數學模型計算:喝酒后幾時血液中的酒精含量達到最大值?最大值為多少
(2)按國家規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數學模型,假設某駕駛員晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=x2+bx+c的圖象與x軸交于 A、B兩點,與y軸交于點C,OB=OC.點D在函數圖象上,CD∥x軸,且CD=2,直線l是拋物線的對稱軸,E是拋物線的頂點.
(1)求b、c的值;
(2)如圖①,連接BE,線段OC上的點F關于直線l的對稱點F'恰好在線段BE上,求點F的坐標;
(3)如圖②,動點P在線段OB上,過點P作x軸的垂線分別與BC交于點M,與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN與△APM的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市出租車計費方式如圖所示,請根據圖象回答問題.
(1)出租車起價是多少元?在多少千米之內只收起價費?
(2)由圖象求出起價里程走完之后每行駛1千米所增加的費用;
(3)小張想用30元坐車在該市游玩,試求他最多能走多少千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至處,與CE交于點F,若∠B=52°,∠DAE=20°,則的度數為( )
A. 40° B. 36° C. 50° D. 45°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com