【題目】閱讀下列材料,關(guān)于x的方程:x+c+的解是x1c,x2;xc的解是x1cx2=﹣;x+c+的解是x1cx2;x+c+的解是x1c,x2;……

1)請(qǐng)觀察上述方程與解的特征,比較關(guān)于x的方程x+c+a≠0)與它們的關(guān)系猜想它的解是什么,并利用方程的解的概念進(jìn)行驗(yàn)證.

2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+a+

【答案】1)方程的解為x1c,x2,驗(yàn)證見(jiàn)解析;(2xax都為分式方程的解.

【解析】

1)根據(jù)材料即可判斷方程的解,然后代入到方程的左右兩邊檢驗(yàn)即可;

2)將方程左右兩邊同時(shí)減去3,變?yōu)轭}干中的形式,即可得出答案.

1)方程的解為x1c,x2,

驗(yàn)證:當(dāng)xc時(shí),

∵左邊=c+,右邊=c+,

∴左邊=右邊,

xcx+c+的解,

同理可得:xx+c+的解;

2)方程整理得:(x3+=(a3+,

解得:x3a3x3,即xax,

經(jīng)檢驗(yàn)xax都為分式方程的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象與x軸交于B兩點(diǎn),與y軸交于點(diǎn),對(duì)稱軸x軸交于點(diǎn)H.

1)求拋物線的函數(shù)表達(dá)式

2)直線y軸交于點(diǎn)E,與拋物線交于點(diǎn)P,Q(點(diǎn)Py軸左側(cè),點(diǎn)Q y軸右側(cè)),連接CP,CQ,若的面積為,求點(diǎn)P,Q的坐標(biāo).

3)在(2)的條件下,連接ACPQG,在對(duì)稱軸上是否存在一點(diǎn)K,連接GK,將線段GK繞點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°,使點(diǎn)K恰好落在拋物線上,若存在,請(qǐng)直接寫出點(diǎn)K的坐標(biāo)不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合實(shí)踐:

問(wèn)題情境

數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們?cè)谡叫沃欣眯D(zhuǎn)變換探究線段之間的關(guān)系探究過(guò)程如下所示:如圖I,在正方形中,點(diǎn)為邊的中點(diǎn).以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上時(shí),連接.

興趣小組發(fā)現(xiàn)的結(jié)論是:;

卓越小組發(fā)現(xiàn)的結(jié)論是:.

解決問(wèn)題

(1)請(qǐng)你證明興趣小組卓越小組發(fā)現(xiàn)的結(jié)論;

拓展探究

證明完興趣小組卓越小組發(fā)現(xiàn)的結(jié)論后,智慧小組提出如下問(wèn)題:如圖2,連接,若正方形的邊長(zhǎng)為,求出的長(zhǎng)度.

(2)請(qǐng)你幫助智慧小組寫出線段的長(zhǎng)度.(直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EAD的中點(diǎn),不用圓規(guī)、量角器等工具,只用無(wú)刻度的直尺作圖.

1)如圖1,在BC上找點(diǎn)F,使點(diǎn)FBC的中點(diǎn);

2)如圖2,連接AC,在AC上取兩點(diǎn)P,Q,使P,QAC的三等分點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖二次函數(shù)的圖像交軸于、,交軸于,直線平行于周,與拋物線另一個(gè)交點(diǎn)為.

1)求函數(shù)的解析式;

2)若軸上的動(dòng)點(diǎn),是拋物線上的動(dòng)點(diǎn),求使以、為頂點(diǎn)的四邊形是平行四邊形的的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn)Cx軸上,OA5,OC13,如圖所示,在OA上取一點(diǎn)E,將EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn),則E點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,記直線y=x+1為l.點(diǎn)A1是直線l與y軸的交點(diǎn),以A1O為邊作正方形A1OC1B1,使點(diǎn)C1落在在x軸正半軸上,作射線C1B1交直線l于點(diǎn)A2,以A2C1為邊作正方形A2C1C2B2,使點(diǎn)C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點(diǎn)B4的坐標(biāo)是 ,點(diǎn)Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(/)與每天銷售量y()之間滿足如圖所示的關(guān)系:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案