【題目】如圖二次函數(shù)的圖像交軸于,交軸于,直線平行于周,與拋物線另一個(gè)交點(diǎn)為.

1)求函數(shù)的解析式;

2)若軸上的動(dòng)點(diǎn),是拋物線上的動(dòng)點(diǎn),求使以、、為頂點(diǎn)的四邊形是平行四邊形的的橫坐標(biāo).

【答案】(1);(215.

【解析】

1)先設(shè)二次函數(shù)的解析式為,展開得,

再把代入,求出a的值即可;

2)先聯(lián)立方程組,求出點(diǎn)坐標(biāo)為,當(dāng)以、、、為頂點(diǎn)四邊形是平行四邊形時(shí),有兩種情況討論,是平行四邊形的邊時(shí)和是平行四邊形的對(duì)角線時(shí),分別求解即可.

解:(1二次函數(shù)的圖像交軸于、,

設(shè)二次函數(shù)的解析式為

展開得:

二次函數(shù)的圖像交軸于,

,得

二次函數(shù)的解析式為

2)聯(lián)立方程組得:,

解得,

點(diǎn)坐標(biāo)為,

當(dāng)以、、為頂點(diǎn)四邊形是平行四邊形時(shí),有兩類情形;

是平行四邊形的邊時(shí),

聯(lián)立方程組,

解得,

如圖,此時(shí),或

是平行四邊形的對(duì)角線時(shí)

、兩點(diǎn)的中點(diǎn)坐標(biāo)為,

設(shè),可得的坐標(biāo)為

的坐標(biāo)代入,

,解得(舍去),,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,內(nèi)接于,AD是直徑,的平分線交BDH,交于點(diǎn)C,連接DC并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)E.

1)求證:;

2)若,求的值

3)如圖2,連接CB并延長(zhǎng),交DA的延長(zhǎng)線于點(diǎn)F,若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠BAC90°,AB2,AC4,DBC邊上一動(dòng)點(diǎn),GBC邊上的一動(dòng)點(diǎn),GEAD分別交AC、BA或其延長(zhǎng)線于FE兩點(diǎn)

1)如圖1,當(dāng)BC5BD時(shí),求證:EGBC;

2)如圖2,當(dāng)BDCD時(shí),FG+EG是否發(fā)生變化?證明你的結(jié)論;

3)當(dāng)BDCD,FG2EF時(shí),DG的值=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)殖場(chǎng)計(jì)劃用96米的竹籬笆圍成如圖所示的①、②、③三個(gè)養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AGBG32.設(shè)BG的長(zhǎng)為2x米.

1)用含x的代數(shù)式表示DF

2x為何值時(shí),區(qū)域③的面積為180平方米;

3x為何值時(shí),區(qū)域③的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,關(guān)于x的方程:x+c+的解是x1cx2;xc的解是x1c,x2=﹣;x+c+的解是x1cx2;x+c+的解是x1c,x2……

1)請(qǐng)觀察上述方程與解的特征,比較關(guān)于x的方程x+c+a≠0)與它們的關(guān)系猜想它的解是什么,并利用方程的解的概念進(jìn)行驗(yàn)證.

2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+a+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過CCDAB于點(diǎn)D,CDAE于點(diǎn)F,過CCGAEBA的延長(zhǎng)線于點(diǎn)G

1)求證:CG是⊙O的切線.

2)求證:AFCF

3)若sinG0.6,CF4,求GA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC10,高AD8,MN、P分別在邊AB、BCAC上移動(dòng),但不與AB、C重合,連接MN、NPMP,且MP始終與BC保持平行,ADMP相交于點(diǎn)E,設(shè)MPx,MNP的面積用y表示.

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)x取什么值時(shí),y有最大值,并求出的最大值;

3)當(dāng)x取什么值時(shí),MNP是等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個(gè)盒子裝入一只不透明的袋子中.

1)攪勻后從中摸出個(gè)盒子,盒中的紙片既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率是   

2)攪勻后先從中摸出個(gè)盒子(不放回),再?gòu)挠嘞碌?/span>個(gè)盒子中摸出個(gè)盒子,把摸出的個(gè)盒中的紙片長(zhǎng)度相等的邊拼在一起,求拼成的圖形是軸對(duì)稱圖形的概率.(不重疊無縫隙拼接)

查看答案和解析>>

同步練習(xí)冊(cè)答案