【題目】如圖,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度數(shù)為_______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保”已經(jīng)成為一種生活理念,同時也帶來無限商機.某高科技發(fā)展公司投資2000萬元成功研制出一種市場需求量較大的低碳高科技產(chǎn)品.已知生產(chǎn)每件產(chǎn)品的成本是40元,在銷售過程中發(fā)現(xiàn):當(dāng)銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利為z(萬元).(年獲利=年銷售額﹣生產(chǎn)成本﹣投資)
(1)試寫出z與x之間的函數(shù)關(guān)系式;
(2)請通過計算說明,到第一年年底,當(dāng)z取最大值時,銷售單價x定為多少?此時公司是盈利了還是虧損了?
(3)若該公司計劃到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明,第二年的銷售單價x(元)應(yīng)確定在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(中考·安徽)如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).
(1)求k1,k2,b的值;
(2)求△AOB的面積;
(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=的圖象上的兩點,且x1<x2,y1<y2,指出點M,N位于哪個象限,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中射線l1和l2分別表示甲、乙兩人所走路程s(千米)與時間t(小時)之間的關(guān)系.
下列說法:
①乙晚出發(fā)1小時;
②乙出發(fā)3小時后追上甲;
③甲的速度是4千米/小時,乙的速度是6千米/小時;
④乙先到達B地.其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個頂點的坐標(biāo)分別是A(3,3),B(1,1),C(4,–1).
(1)直接寫出點A、B、C關(guān)于x軸對稱的點A1、B1、C1的坐標(biāo);A1(__________)、B1(__________)、C1(__________).
(2)在圖中作出△ABC關(guān)于y軸對稱的圖形△A2B2C2.
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游商品經(jīng)銷店欲購進A、B兩種紀(jì)念品,若用380元購進A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購進A種紀(jì)念品10件,B種紀(jì)念品6件.
(1)求A、B兩種紀(jì)念品的進價分別為多少?
(2)若該商店每銷售1件A種紀(jì)念品可獲利5元,每銷售1件B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購進A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出時總獲利不低于216元,問應(yīng)該怎樣進貨,才能使總獲利最大,最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1各單位,格點三角形(頂點是網(wǎng)格線的交點的三角形)△ABC的頂點A,B的坐標(biāo)分別為(1,4),(﹣3,1).
(1)請在網(wǎng)格所在的平面內(nèi)作出符合上述表述的平面直角坐標(biāo)系;
(2)請你將A、B、C的橫坐標(biāo)不變,縱坐標(biāo)乘以﹣1所得到的點A1、B1、C1描在坐標(biāo)系中,并畫出△A1B1C1,其中點C1的坐標(biāo)為 .
(3)△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:一個數(shù)的平方等于-1,記作,于是可知 ……,按照這樣的規(guī)律,等于( )
A. 1B. -1C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com