【題目】如圖是一座現(xiàn)代化大型單塔雙面扇形斜拉橋,主橋采用獨(dú)塔雙面索斜拉設(shè)計(jì),主橋樁呈“H”形,兩側(cè)用鋼絲繩斜拉固定.

問(wèn)題提出:

如何測(cè)量主橋樁頂端至橋面的距離AD?

方案設(shè)計(jì):

如圖,某數(shù)學(xué)課題研究小組通過(guò)調(diào)查研究和實(shí)地測(cè)量,在橋面B處測(cè)得∠ABC=26.57°,再沿BD方向走21米至C處,在C處測(cè)得∠ACD=30.96°.

問(wèn)題解決:

根據(jù)上述方案和數(shù)據(jù),求銀灘黃河大橋主橋樁頂端至橋面的距離AD

(結(jié)果精確到1m,參考數(shù)據(jù):sin26.57°≈0.447cos26.57°≈0.894,tan26.57°≈0.500sin30.96°≈0.514,cos30.96°≈0.858,tan30.96°≈0.600)

【答案】銀灘黃河大橋主橋樁頂端至橋面的距離AD63米.

【解析】

先根據(jù)題意得出∠ABD、∠ACD的度數(shù)及BC的長(zhǎng),再利用銳角三角函數(shù)的定義,在RtABD中用AD表示BD,在RtACD中用AD表示CD,最后由BD-CD=BC列出AD的方程,求得AD便可.

解:根據(jù)題意得:

ABD=26.57°,∠ACD=30.96°,BC=21米,

RtABD中,∠ABD=26.57°,

tanABD,

BD

RtACD中,∠ACD=30.96°,

tanACD,

CD,

BDCD=BCBC=21,

2AD

AD=63()

答:銀灘黃河大橋主橋樁頂端至橋面的距離AD63米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店專售一款電動(dòng)牙刷,其成本為20/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價(jià)x(/支)之間存在如圖所示的關(guān)系.

(1)yx之間的函數(shù)關(guān)系式.

(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡(jiǎn)稱新冠肺炎)疫情,該網(wǎng)店店主決定從每天獲得的利潤(rùn)中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤(rùn)不低于550元,如何確定這款電動(dòng)牙刷的銷售單價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在完善基礎(chǔ)設(shè)施、改善市容市貌、提升城市品質(zhì)過(guò)程中,2019年我市開展人行道改造工程,需要花崗巖地板磚鋪設(shè)人行道.現(xiàn)租用甲、乙兩種貨車運(yùn)載地板磚,已知一輛甲車每次運(yùn)載的重量比一輛乙車多2噸,且甲車運(yùn)載16噸地板磚和乙車運(yùn)載12噸地板磚所用的車輛數(shù)相同.

1)甲、乙兩種貨車每次運(yùn)載地板磚各多少噸?

2)現(xiàn)租用甲車a輛、乙車b輛,剛好運(yùn)載地板磚100噸,且a3b,共有多少種租車方案?

3)在(2)中已知一輛甲車每次的運(yùn)費(fèi)是380元,一輛乙車每次的運(yùn)費(fèi)是300元,如何租用甲、乙兩種車可使得總運(yùn)費(fèi)最低?求出最低總運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A是直線x=1上一個(gè)動(dòng)點(diǎn),以A為頂點(diǎn)的拋物線y1=a(x1)2+t和拋物線y2=ax2交于點(diǎn)B(A,B不重合,a是常數(shù)),直線AB和拋物線y2=ax2交于點(diǎn)BC,直線x=1和拋物線y2=ax2交于點(diǎn)D(如圖僅供參考)

(1)求點(diǎn)B的坐標(biāo)(用含有at的式子表示);

(2)a0,且點(diǎn)A向上移動(dòng)時(shí),點(diǎn)B也向上移動(dòng),求的范圍;

(3)當(dāng)B,C重合時(shí),求的值;

(4)當(dāng)a0,且△BCD的面積恰好為3a時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:

在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如 1,將:矩形紙片 ABCD 沿對(duì)角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB 4cm,AC8cm

操作發(fā)現(xiàn):

1)將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△ACD,過(guò)點(diǎn) C AC′的平行線,與 DC'的延長(zhǎng)線 交于點(diǎn) E,則四邊形 ACEC′的形狀是

2)創(chuàng)新小組將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使 B、 AD 三點(diǎn)在同一條直線上,得到如圖 3 所示的△ACD,連接 CC',取 CC′的中 點(diǎn) F,連接 AF 并延長(zhǎng)至點(diǎn) G,使 FGAF,連接 CGCG,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:

3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC 沿著 BD 方向平移,使點(diǎn) B 與點(diǎn) A 重合,此時(shí) A 點(diǎn)平移至 A'點(diǎn),A'C BC′相交于點(diǎn) H 如圖 4 所示,連接 CC′,試求 tanCCH 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形,被一矩形所截,被截成三等分,EHBC,則四邊形的面積是的面積的:( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=mx2+(12m)x+13m

(1)當(dāng)m=2時(shí),求二次函數(shù)圖象的頂點(diǎn)坐標(biāo);

(2)已知拋物線與x軸交于不同的點(diǎn)A、B

①求m的取值范圍;

②若3≤m≤4時(shí),求線段AB的最大值及此時(shí)二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)的過(guò)程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)之間的關(guān)系如圖所示.已知:洗衣機(jī)的排水速度為每分鐘20升.

1)求排水時(shí)yx之間的函數(shù)解析式;

2)洗衣機(jī)中的水量到達(dá)某一水位后,過(guò)13.7分鐘又到達(dá)該水位,求該水位為多少升.

查看答案和解析>>

同步練習(xí)冊(cè)答案