(2012•路北區(qū)一模)如圖,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,DE∥AB交BC于點E.若AD=3,BC=10,則CD的長是( )

A.7
B.10
C.13
D.14
【答案】分析:根據(jù)平行線的性質(zhì),得∠DEC=∠B=70°,根據(jù)三角形的內(nèi)角和定理,得∠CDE=70°,再根據(jù)等角對等邊,得CD=CE.根據(jù)兩組對邊分別平行,知四邊形ABED是平行四邊形,則BE=AD=3,從而求解.
解答:解:∵DE∥AB,∠B=70°,
∴∠DEC=∠B=70°.
又∵∠C=40°,
∴∠CDE=70°.
∴CD=CE.
∵AD∥BC,DE∥AB,
∴四邊形ABED是平行四邊形.
∴BE=AD=3.
∴CD=CE=BC-BE=BC-AD=10-3=7.
故選A.
點評:此題綜合運用了平行四邊形的判定及性質(zhì)、平行線的性質(zhì)、等角對等邊的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•路北區(qū)一模)拋物線y=x2先向右平移1個單位,再向上平移3個單位,得到新的拋物線解析式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•路北區(qū)一模)坐標網(wǎng)格中一段圓弧經(jīng)過點A、B、C,其中點B的坐標為(4,3),點C坐標為(6,1),則該圓弧所在圓的圓心坐標為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•路北區(qū)一模)已知:方程
a
x-3
=
1
x
的解為x=-3,求
a
a-1
-
1
a2-a
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•路北區(qū)一模)如圖,拋物線y=(x+1)2+k與x軸相交于A、B兩點,與y軸相交于點C(0,-3).
(1)求拋物線的對稱軸及k值;
(2)拋物線的對稱軸上存在一點P,使得PA+PC的值最小,求此時點P的坐標;
(3)點M是拋物線上一動點,且在第三象限,當(dāng)M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標;
(4)若點E在拋物線的對稱軸上,拋物線上是否存在點F,使以A、B、E、F為頂點的四邊形為平行四邊形?若存在,直接寫出所有滿足條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市奉賢區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2012•路北區(qū)一模)函數(shù)y=中,自變量x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案