順次連接直角梯形四邊中點所得的四邊形是
 
形.
分析:連接BD,根據(jù)三角形的中位線定理求出EF=
1
2
BD,EF∥BD,GH=
1
2
BD,GH∥BD,推出EF∥GH,EF=GH,根據(jù)平行四邊形的判定即可推出答案.
解答:精英家教網(wǎng)解:
連接BD,
∵E為AD中點,F(xiàn)為AB中點,
∴EF=
1
2
BD,EF∥BD,
同理GH=
1
2
BD,GH∥BD,
∴EF∥GH,EF=GH,
∴四邊形EFGH是平行四邊形,
故答案為:平行四邊形.
點評:本題主要考查對平行公理及推論,平行四邊形的判定,直角梯形,三角形的中位線等知識點的理解和掌握,能推出EF∥GH和EF=GH是正此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

順次連接等腰梯形四邊中點得到一個四邊形,再順次連接所得四邊形四邊的中點得到的圖形是 ( 。
A、等腰梯形B、直角梯形C、菱形D、矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

順次連接直角梯形四邊中點所得的四邊形是________形.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年江蘇省揚州中學西校區(qū)九年級(上)期中數(shù)學試卷(解析版) 題型:填空題

順次連接直角梯形四邊中點所得的四邊形是    形.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省常州市麗華中學九年級(上)第一次階段調研數(shù)學試卷(解析版) 題型:填空題

順次連接直角梯形四邊中點所得的四邊形是    形.

查看答案和解析>>

同步練習冊答案