【題目】如圖,以直線上一點為端點作射線,使,在同一個平面內(nèi)將一個直角三角板的直角頂點放在點處.(注:)
(1)如圖1,如果直角三角板的一邊放在射線上,那么的度數(shù)為______;
(2)如圖2,將直角三角板繞點按順時針方向轉(zhuǎn)動到某個位置,如果恰好平分,求的度數(shù);
(3)如圖3,將直角三角板繞點任意轉(zhuǎn)動,如果始終在的內(nèi)部,請直接用等式表示和之間的數(shù)量關(guān)系.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點同時出發(fā),相向而行,當兩人相遇后,甲繼續(xù)向點B前進(甲到達點B時停止運動),乙也立即向B點返回.在整個運動過程中,甲、乙均保持勻速運動.甲、乙兩人之間的距離y(米)與乙運動的時間x(秒) 之間的關(guān)系如圖所示.則甲到B點時,乙距B點的距離是________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=4,BC=12,點E是BC的中點.點P、Q分別是邊AD、BC上的兩點,其中點P以每秒個1單位長度的速度從點A運動到點D后再返回點A,同時點Q以每秒2個單位長度的速度從點C出發(fā)向點B運動.當其中一點到達終點時停止運動.當運動時間t為_____秒時,以點A、P,Q,E為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD在平面直角坐標系的第一象限內(nèi),BC與x軸平行,AB=1,點C的坐標為(6,2),E是AD的中點;反比例函數(shù)y1=(x>0)圖象經(jīng)過點C和點E,過點B的直線y2=ax+b與反比例函數(shù)圖象交于點F,點F的縱坐標為4.
(1)求反比例函數(shù)的解析式和點E的坐標;
(2)求直線BF的解析式;
(3)直接寫出y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有小島A和小島B,輪船以45km/h的速度由C向B航行,在C處測得A的方位角為北偏東60°,測得B的方位角為南偏東45°,輪船航行2小時后到達小島B處,在B處測得小島A在小島B的正北方向.求小島A與小島B之間的距離(結(jié)果保留整數(shù),參考數(shù)據(jù): ≈1.41, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中:
①0是最小的整數(shù);
②有理數(shù)不是正數(shù)就是負數(shù);
③正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù);
④非負數(shù)就是正數(shù);
⑤不僅是有理數(shù),而且是分數(shù);
⑥是無限不循環(huán)小數(shù),所以不是有理數(shù);
⑦無限小數(shù)不都是有理數(shù);
⑧正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù).
其中錯誤的說法的個數(shù)為( 。
A.7個B.6個C.5個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學老師布置了一道思考題“計算:(-)÷()”,小明仔細思考了一番,用了一種不同的方法解決了這個問題.
小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=.
(1)請你判斷小明的解答是否正確,并說明理由.
(2)請你運用小明的解法解答下面的問題.
計算:(-)÷(+).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a、b分別與∠A的兩邊相交,且a∥b.下列各角的度數(shù)關(guān)系正確的是( )
A. ∠2+∠5>180° B. ∠2+∠3<180° C. ∠1+∠6>180° D. ∠3+∠4<180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列按照一定規(guī)律排列一組圖形,其中圖形①中共有2個小三角形,圖形②中共有6個小“三角形,圖形③中共有11個小三角形,圖形④中共有17個小三角形,……,按此規(guī)律,圖形⑧中共有個小三角形,這里的( ).
A.32B.41C.51D.53
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com