【題目】閱讀材料,我們給出如下定義:若一個(gè)四邊形中存在一組對(duì)邊的平方和等于另一組對(duì)邊的平方和,則稱(chēng)這個(gè)四邊形為等平方和四邊形.

1)寫(xiě)出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等平方和四邊形的圖形的名稱(chēng):

2)如圖,在梯形ABCD中,ADBC,ACBD,垂足為O

求證:,即四邊形ABCD是等平方和四邊形.

【答案】1)矩形、正方形、對(duì)角線互相垂直的等腰梯形;(2)見(jiàn)解析;

【解析】

(1)據(jù)題中定義,只要鄰邊相等的平行四邊形即符合要求,則菱形或正方形都符合要求.

(2)根據(jù)ACBD和勾股定理易證得AD2+BC2=AB2+DC2即四邊形ABCD是等平方和四邊形.

1)矩形、正方形、對(duì)角線互相垂直的等腰梯形.

2)證明:

ACBD,

AOD=AOB=BOC=COD=,

中,由勾股定理得,

OA2+ OD2=AD2 ,

同理可得:

OB2+ OC2=BC2 ,

OA2+ OB2=AB2 ,

OD2+ OC2=CD2 ,

AD2+ BC2 =AB2+ DC2 ,

即四邊形ABCD是等平方和四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y2x+2y軸交于A點(diǎn),與反比例函數(shù)yx0)的圖象交于點(diǎn)M,過(guò)MMHx軸于點(diǎn)H,且tanAHO2

1)求H點(diǎn)的坐標(biāo)及k的值;

2)點(diǎn)Py軸上,使△AMP是以AM為腰的等腰三角形,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的P點(diǎn)坐標(biāo);

3)點(diǎn)Na,1)是反比例函數(shù)yx0)圖象上的點(diǎn),點(diǎn)Qm,0)是x軸上的動(dòng)點(diǎn),當(dāng)△MNQ的面積為3時(shí),請(qǐng)求出所有滿(mǎn)足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,以OD,CD為鄰邊作平行四邊形DOEC,OEBC于點(diǎn)F,連結(jié)BE

1)求證:FBC中點(diǎn).

2)若OBACOF1,求平行四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們學(xué)習(xí)了勾股定理后,都知道勾三、股四、弦五”.

觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò).

(1)請(qǐng)你根據(jù)上述的規(guī)律寫(xiě)出下一組勾股數(shù):________

(2)若第一個(gè)數(shù)用字母n(n為奇數(shù),且n≥3)表示,那么后兩個(gè)數(shù)用含n的代數(shù)式分別表示為________________,請(qǐng)用所學(xué)知識(shí)說(shuō)明它們是一組勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組用高為1米的儀器測(cè)量建筑物CD的高度.如示意圖,由距CD一定距離的A處用儀器觀察建筑物頂部D的仰角為∠β=30,在AC之間選一點(diǎn)B,由B處用儀器觀察建筑物頂部D的仰角為∠ɑ=60.測(cè)得A,B之間的距離為4米,建筑物CD的高度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】姐妹兩人在50米的跑道上進(jìn)行短路比賽,兩人從出發(fā)點(diǎn)同時(shí)起跑,姐姐到達(dá)終點(diǎn)時(shí),妹妹離終點(diǎn)還差3米,已知姐妹兩人的平均速度分別為a/秒、b/秒.

1)如果兩人重新開(kāi)始比賽,姐姐從起點(diǎn)向后退3米,姐妹同時(shí)起跑,兩人能否同時(shí)到達(dá)終點(diǎn)?若能,請(qǐng)求出兩人到達(dá)終點(diǎn)的時(shí)間;若不能,請(qǐng)說(shuō)明誰(shuí)先到達(dá)終點(diǎn).

2)如果兩人想同時(shí)到達(dá)終點(diǎn),應(yīng)如何安排兩人的起跑位置?請(qǐng)你設(shè)計(jì)兩種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某公園內(nèi)健身的太空漫步機(jī),當(dāng)人踩在踏板上,握住扶手,兩腿邁開(kāi)到一定角度時(shí)的示意圖如圖所示,某個(gè)高分米的石凳旁邊建一個(gè)太空漫步機(jī),為方便行人通過(guò),踏板與石凳之間保持了一定的距離,測(cè)得踏板靜止時(shí)分米,分米,于點(diǎn),且,則的長(zhǎng)為_____分米;在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)與點(diǎn)的距離最小時(shí),此時(shí)點(diǎn)的距離為_______分米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(方法回顧)連接三角形任意兩邊中點(diǎn)的線段叫三角形的中位線,探索三角形中位線的性質(zhì),方法如下:

①如圖1D、E分別是AB、AC中點(diǎn),延長(zhǎng)DEF,使EF=DE,連接CF

②證明ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到線段DEBC的位置關(guān)系和數(shù)量關(guān)系分別為_______________;

2)(初步運(yùn)用)如圖2,正方形ABCD中,E為邊AD中點(diǎn),GF分別在邊AB、CD上,且AG2,DF3,∠GEF90°,求GF長(zhǎng).

3)(拓展延伸)如圖3,四邊形ABCD中,∠A100°,∠D110°,EAD中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG2,DF,∠GEF90°,求GF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B為反比例函數(shù)y1圖象上兩點(diǎn),連接AB,線段AB經(jīng)過(guò)點(diǎn)OC是反比例函數(shù)y2=k0)在第二象限內(nèi)的圖象上一點(diǎn),當(dāng)CAB是以AB為底的等腰三角形,且時(shí),k的值為( 。

A.B.3C.4D.

查看答案和解析>>

同步練習(xí)冊(cè)答案