【題目】在平面直角坐標系中,將點A(﹣5,﹣3)向右平移8個單位長度得到點B,則點B關于y軸的對稱點C的坐標是_____

【答案】(-3,-3)

【解析】

首先根據(jù)橫坐標右移加,左移減可得B點坐標,然后再關于y軸對稱點的坐標特點:橫坐標互為相反數(shù),縱坐標不變可得答案.

A(5,-3)向右平移8個單位長度得到的B的坐標為(5+8,-3),(3,-3),

則點B關于y軸的對稱點C的坐標是:(3,-3).

故答案為:(3,-3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)正整數(shù)按如下個規(guī)律排列

第一列

第二列

第三列

第四列

第五列

………

第一行

1

2

3

4

第二行

8

7

6

5

第三行

9

10

11

12

第四行

16

15

14

13

第五行

17

18

19

20

………

若正整數(shù)2019位于第a行、第b列,則a+b_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

背景閱讀 早在三千多年前,我國周朝數(shù)學家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即勾三,股四,弦五.它被記載于我國古代著名數(shù)學著作《周髀算經(jīng)》中.為了方便,在本題中,我們把三邊的比為3:4:5的三角形稱為(3,4,5)型三角形.例如:三邊長分別為9,12,15或的三角形就是(3,4,5)型三角形.用矩形紙片按下面的操作方法可以折出這種類型的三角形.

實踐操作 如圖1,在矩形紙片ABCD中,AD=8cm,AB=12cm.

第一步:如圖2,將圖1中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平.

第二步:如圖3,將圖2中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF.

第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到ADH,再沿AD折疊,折痕為AM,AM與折痕EF交于點N,然后展平.

問題解決

(1)請在圖2中證明四邊形AEFD是正方形.

(2)請在圖4中判斷NF與ND的數(shù)量關系,并加以證明.

(3)請在圖4中證明AEN是(3,4,5)型三角形.

探索發(fā)現(xiàn)

(4)在不添加字母的情況下,圖4中還有哪些三角形是(3,4,5)型三角形?請找出并直接寫出它們的名稱.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知M是一個五次多項式,N是一個三次多項式,則M+N一定是(

A. 五次多項式B. 五次整式C. 多項式D. 單項式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,其面積標記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2 , …,按照此規(guī)律繼續(xù)下去,則S2017的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將直線y=x+b沿y軸向下平移3個單位長度,點A(﹣1,2)關于y軸的對稱點落在平移后的直線上,則b的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的半徑長為1,AB、AC是O的兩條弦,且AB=AC,BO的延長線交AC于點D,聯(lián)結OA、OC.

(1)求證:OAD∽△ABD;

(2)當OCD是直角三角形時,求B、C兩點的距離;

(3)記AOB、AOD、COD 的面積分別為S1、S2、S3,如果S2是S1和S3的比例中項,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1、l2相交于點A(2,3),直線l1與x軸交點B的坐標為(﹣1,0),直線l2與y軸交于點C,已知直線l2的解析式為y=2.5x﹣2,結合圖象解答下列問題:
(1)求直線l1的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD∥AB,∠ABC,∠BCD 的角平分線交 AD 于 E 點,且 E 在 AD 上,CE 交 BA 的延長線于 F 點.

(1)試問 BE 與 CF 互相垂直嗎?若垂直,請說明理由;
(2)若 CD=3,AB=4,求 BC 的長

查看答案和解析>>

同步練習冊答案