【題目】二次函數(shù)圖象的頂點坐標(biāo)是(35),且拋物線經(jīng)過點A1,3).

1)求此拋物線的解析式;

2)寫出它的開口方向,對稱軸、頂點坐標(biāo)和最值.

【答案】(1)y=x32+5;(2)開口向下,對稱軸為直線x=3,當(dāng)x=3時函數(shù)的最大值為5;

【解析】

1)設(shè)頂點式y=ax-32+5,然后把A點坐標(biāo)代入求出a即可得到拋物線的解析式;

2)根據(jù)二次函數(shù)解析式,即可得到開口方向,對稱軸、頂點坐標(biāo)和最值.

1)設(shè)拋物線的解析式為y=ax32+5,

A1,3)代入上式得3=a132+5

,解得a=,

∴拋物線的解析式為y=x32+5,

2)根據(jù)y=x32+5,可得拋物線開口向下,對稱軸為直線x=3,頂點坐標(biāo)為(3,5),當(dāng)x=3時函數(shù)的最大值為5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】休閑廣場的邊緣是一個坡度為i12.5的緩坡CD,靠近廣場邊緣有一架秋千.秋千靜止時,底端A到地面的距離AB0.5m,B到緩坡底端C的距離BC0.7m.若秋千的長OA2m,則當(dāng)秋千擺動到與靜止位置成37°時,底端A到坡面的豎直方向的距離AE約為(  )(參考數(shù)據(jù):sin37°0.60,cos37°0.80,tan37°0.75

A. 0.4mB. 0.5mC. 0.6mD. 0.7m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價比小櫻桃的進(jìn)價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進(jìn)價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點PPDAC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設(shè)點P的運動時間為t秒.

(1)用含t的代數(shù)式表示線段DC的長;

(2)當(dāng)點Q與點C重合時,求t的值;

(3)設(shè)△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式;

(4)當(dāng)線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動.如果P,Q分別從AB同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于兩點,其中點A坐標(biāo)(-10),點C0,5)、D1,8)在拋物線上,M為拋物線的頂點.

1)求拋物線的解析式;

2)求△MCB面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,BC=10cm、DC=6cm,點E、F分別為邊AB、BC上的兩個動點,E從點A出發(fā)以每秒5cm的速度向B運動,F從點B出發(fā)以每秒3cm的速度向C運動,設(shè)運動時間為t秒.若∠AFD=AED,則t的值為( 。

A. B. 0.5C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OAOB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.

(1)A、B兩點的坐標(biāo)。

(2)求當(dāng)t為何值時,△APQ△AOB相似,并直接寫出此時點Q的坐標(biāo).

(3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以A、PQ、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字 ,, 的卡片,這些卡片除數(shù)字外都相同.甲同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.下圖是他所畫的樹狀圖的一部分.

(1)由上圖分析,甲同學(xué)的游戲規(guī)則是:從袋子中隨機抽出一張卡片后 (填"放回"或"不放回"),再隨機抽出一張卡片;

(2)幫甲同學(xué)完成樹狀圖;

(3)求甲同學(xué)兩次抽到的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案