擲一枚質(zhì)地均勻的正方體骰子(每個(gè)面的點(diǎn)數(shù)為1,2,3,4,5,6,且相對面的點(diǎn)數(shù)和相等),朝上一面的點(diǎn)數(shù)作為a,朝地一面的點(diǎn)數(shù)作為b,現(xiàn)以長度為a,b的兩條線段的其中一條為腰,另一條為下底,并以3為上底(下底長大于上底長),能構(gòu)成等腰梯形的概率為
 
考點(diǎn):列表法與樹狀圖法,等腰梯形的判定
專題:
分析:由擲一枚質(zhì)地均勻的正方體骰子(每個(gè)面的點(diǎn)數(shù)為1,2,3,4,5,6,且相對面的點(diǎn)數(shù)和相等),可得a與b的所有可能為:(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),又由能構(gòu)成等腰梯形的有:(2,5),(3,4),(4,3),(5,2),即可求得答案.
解答:解:∵正方體骰子每個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、5、6,且相對面的點(diǎn)數(shù)和相等,
∴a與b的所有可能為:(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),
∵現(xiàn)以長度為a,b的兩條線段的其中一條為腰,另一條為下底,并以3為上底(下底長大于上底長),
∴能構(gòu)成等腰梯形的有:(2,5),(3,4),(4,3),(5,2),
∴能構(gòu)成等腰梯形的概率為:
4
6
=
2
3

故答案為:
2
3
點(diǎn)評:本題考查的是用列表法或畫樹狀圖法求概率與等腰梯形的性質(zhì).此題難度適中,注意概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C,D在y軸上,AB⊥x軸,BC⊥y軸,且B(10,3),OD=5,連接AD交于BC于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度沿折線A→O→D向終點(diǎn)D勻速運(yùn)動(dòng),連接PB,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△PAB的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,在點(diǎn)P運(yùn)動(dòng)過程中,t為何值時(shí),AD將△PAB的面積分別相等的兩部分?請求出t的值,并直接寫出此時(shí)PB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程(m-1)x2+x+m2-m=0的一個(gè)根為0,則m的值為( 。
A、0B、1C、1或0D、-1或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商店有甲乙兩種筆記本,每個(gè)甲種筆記本比乙種筆記本多2元錢,且花66元購買甲種筆記本的數(shù)量與花60元購買乙種筆記本的數(shù)量相同,設(shè)每個(gè)乙種筆記本的單價(jià)是x元,根據(jù)題意,下面所列出的方程中正確的是( 。
A、
66
x
=
60
x-2
B、
66
x-2
=
60
x
C、
66
x
=
60
x+2
D、
66
x+2
=
60
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有紅、黃、藍(lán)、綠四種顏色的卡片,每種顏色的卡片各有3張.相同顏色的卡片上寫相同的自然數(shù),不同顏色的卡片上寫不同的自然數(shù).老師把這12張卡片發(fā)給6名同學(xué),每人得到兩張顏色不同的卡片.然后老師讓學(xué)生分別求出各自兩張卡片上兩個(gè)自然數(shù)的和.六名同學(xué)交上來的答案分別為:92、125、133、147、158、191.老師看完6名同學(xué)的答案后說,只有一名同學(xué)的答案錯(cuò)了.問:四種顏色卡片上所寫各數(shù)中最小數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(-3)2
=
 
,
1
4
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求代數(shù)式(1-
3
x+2
x2-1
x+2
的值,其中x是不等式組
x-2>0
2x+1<8
的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程(方程組)
(1)
x-3
2
-
2x+1
3
=1

(2)
2x+15y=3
3x-2y=-20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,四邊形ABCD是正方形,E是BC邊的中點(diǎn),∠AEF=90°,EF交正方形外角平分線CF于F點(diǎn),則有AE=EF.
(1)如圖2,若點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),上述其它條件不變,上述結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由.
(2)如圖3,若點(diǎn)E在CB的延長線上時(shí),上述其它條件不變,上述結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案