(2008•邵陽)如圖,AB、CD是豎立在公路兩側,且架設了跨過公路的高壓電線的電桿,AB=CD=16米.現(xiàn)在點A處觀測電桿CD的視角為19°42′,視線AD與AB的夾角為59度.以點B為坐標原點,向右的水平方向為x軸的正方向,建立平面直角坐標系.
(1)求電桿AB、CD之間的距離和點D的坐標;
(2)在今年年初的冰雪災害中,高壓電線由于結冰下垂近似成拋物線y=x2+bx(b為常數(shù)).在通電情況,高壓電線周圍12米內為非安全區(qū)域.請問3.2米高的車輛從高壓電線下方通過時,是否有危險,并說明理由.
【答案】分析:(1)本題要運用三角函數(shù)的知識點解出DE、CE、AE的值.
(2)由1得拋物線過點D,代入坐標解出b的值.求出頂點坐標為(10,-1)即可得解.
解答:解:(1)電桿AB、CD之間的距離為AE,在Rt△ADE中,DE=AE•tan31°,
在Rt△AEC中,CE=AE•tan11°18′,
∴AE•tan31°-AE•tan11°18′=16,
∴AE=40,
在Rt△ADE中,DE=AE•tan31°=24,
DF=DE-EF=DE-AB=24-16=8,即D點坐標為(40,8);

(2)由y=x2+bx過點D(40,8)可得8=×402+40•b,
解得b=-0.2,
x2-0.2x=x2-x=(x-10)2-1,其頂點坐標為(10,-1),
∵AB=CD=16米,
∴電線離地面最近距離為16-1=15米,
又3.2+12=15.2>15,
∴3.2米高的車輛從高壓電線下方通過時,會能危險.
點評:利用三角函數(shù)的知識求出有關邊的值,再求出頂點坐標后可解,難度中等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(10)(解析版) 題型:解答題

(2008•邵陽)如圖,正方形OA1B1C1的邊長為1,以O為圓心、OA1為半徑作扇形OA1C1與OB1相交于點B2,設正方形OA1B1C1與扇形OA1C1之間的陰影部分的面積為S1;然后以OB2為對角線作正方形OA2B2C2,又以O為圓心,OA2為半徑作扇形OA2C2與OB1相交于點B3,設正方形OA2B2C2與扇形OA2C2之間的陰影部分面積為S2;按此規(guī)律繼續(xù)作下去,設正方形OAnBnCn與扇形OAnCn之間的陰影部分面積為Sn
(1)求S1,S2,S3
(2)寫出S2008;
(3)試猜想Sn(用含n的代數(shù)式表示,n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2008•邵陽)如圖,AB與CD相交于點O,OE⊥CD,∠BOE=54°,則∠AOC=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省邵陽市中考數(shù)學試卷(解析版) 題型:解答題

(2008•邵陽)如圖,將含30°角的直角三角板ABC(∠B=30°)繞其直角頂點A逆時針旋轉α解(0°<α<90°),得到Rt△ADE,AD與BC相交于點M,過點M作MN∥DE交AE于點N,連接NC.設BC=4,BM=x,△MNC的面積為S△MNC,△ABC的面積為S△ABC
(1)求證:△MNC是直角三角形;
(2)試求用x表示S△MNC的函數(shù)關系式,并寫出x的取值范圍;
(3)以點N為圓心,NC為半徑作⊙N,
①當直線AD與⊙N相切時,試探求S△MNC與S△ABC之間的關系;
②當S△MNC=S△ABC時,試判斷直線AD與⊙N的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省邵陽市中考數(shù)學試卷(解析版) 題型:填空題

(2008•邵陽)如圖,AB,AC分別是⊙O的直徑和弦,OD⊥AC于點D,連接BD,BC,AB=5,AC=4,則BD=   

查看答案和解析>>

同步練習冊答案