【題目】已知關(guān)于x的方程x2-3x+c=0有兩個(gè)實(shí)數(shù)根.

1)求c的取值范圍;

2)若c為正整數(shù),取符合條件的c的一個(gè)值,并求出此時(shí)原方程的根.

【答案】1c;(2)當(dāng)c=2時(shí),x1=1,x2=2;當(dāng)c=1時(shí),x1=x2=

【解析】

1)先根據(jù)方程有兩個(gè)實(shí)數(shù)根可知△≥0,由△≥0可得到關(guān)于c的不等式,求出c的取值范圍即可;

2)由(1)中c的取值范圍得出符合條件的c的正整數(shù)值,代入原方程,利用因式分解法或求根公式即可求出x的值.

1)解:∵方程有兩個(gè)實(shí)根,∴=b2-4ac=9-4c≥0,∴c

2)解:∵c,且c為正整數(shù),∴c=1c=2

c=2,方程為x2-3x+2=0,∴(x-1)(x-2=0

解得:x1=1,x2=2

也可如下:

c=1,方程為x2-3x+1=0,解得:x1= ,x2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A、B兩點(diǎn)表示的數(shù)分別為a、b,且a、b滿足|a2|(b8)20,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0

(1) 線段AB的中點(diǎn)表示的數(shù)為___________

用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為___________

(2) 求當(dāng)t為何值時(shí),PQAB

(3) 若點(diǎn)MPA的中點(diǎn),點(diǎn)NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)市民開展了有關(guān)霧霾的調(diào)查問卷,調(diào)查內(nèi)容是你認(rèn)為哪種措施治理霧霾最有效,有以下四個(gè)選項(xiàng):A:綠化造林.  B:汽車限行.C:拆除燃煤小鍋爐.D:使用清潔能源.調(diào)查過程中隨機(jī)抽取了部分市民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

(1)這次被調(diào)查的市民共有多少人?

(2)請(qǐng)你將統(tǒng)計(jì)圖1補(bǔ)充完整;

(3)求圖2D項(xiàng)目對(duì)應(yīng)的扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)是多少?

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有900名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信進(jìn)行溝通的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD為正方形,EBC的中點(diǎn),連接AE,過點(diǎn)A作∠AFD,使∠AFD=2EAB,AFCD于點(diǎn)F,如圖①,易證:AF=CD+CF

1)如圖②,當(dāng)四邊形ABCD為矩形時(shí),其他條件不變,線段AF,CDCF之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并給予證明;

2)如圖③,當(dāng)四邊形ABCD為平行四邊形時(shí),其他條件不變,線段AF,CDCF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

圖① 圖② 圖③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=3x與反比例函數(shù)y=k≠0)的圖象交于A1m)和點(diǎn)B

1)求m,k的值,并直接寫出點(diǎn)B的坐標(biāo);

2)過點(diǎn)Pt0)(-1≤t≤1)作x軸的垂線分別交直線y=3x與反比函數(shù)y=k≠0)的圖象于點(diǎn)E,F

當(dāng)t=時(shí),求線段EF的長;

0EF≤8,請(qǐng)根據(jù)圖象直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“4000輛自行車、187個(gè)服務(wù)網(wǎng)點(diǎn)”,某市區(qū)現(xiàn)已實(shí)現(xiàn)公共自行車服務(wù)全覆蓋,為人們的生活帶來了方便。圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A,D,C,E在同一條直線上,CD=30 cm,DF=20 cm,AF=25 cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15 cm,且∠EAB=75°.

(1)求AD的長;

(2)求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過點(diǎn)C的直線MN∥AB,D為AB上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE.

(1)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;

(2)在(1)的條件下,當(dāng)∠A等于多少度時(shí),四邊形BECD是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B、CD四個(gè)整數(shù)點(diǎn)即各點(diǎn)均表示整數(shù),且,若A、D兩點(diǎn)表示的數(shù)的分別為6,點(diǎn)EBD的中點(diǎn),那么該數(shù)軸上上述五個(gè)點(diǎn)所表示的整數(shù)中,離線段BD的中點(diǎn)最近的整數(shù)是  

A. B. 0C. 1D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案