【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間 x(單位:h)變化的圖象如圖所示,
根據(jù)圖中提供的信息,有下列說(shuō)法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的有____個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F分別是□ABCD的邊BC、AD上的中點(diǎn).
(1) 求證:△ABE≌△CDF;
(2) 當(dāng)∠BAC= ° 時(shí),四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生會(huì)為了解該校學(xué)生喜歡球類活動(dòng)的情況,采取抽樣調(diào)查的辦法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制成右邊的兩幅不完整的統(tǒng)計(jì)圖(如圖(1),圖(2),要求每位同學(xué)只能選擇一種自己喜歡的球類;圖中用乒乓球、足球、排球、籃球代表喜歡這四種球類中的某一種球類的學(xué)生人數(shù)),請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:
(1)在這次研究中,一共調(diào)查了多少名學(xué)生?
(2)喜歡排球的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角是多少度?
(3)補(bǔ)全頻數(shù)分布折線統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,AE是過(guò)A點(diǎn)的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:BD=DE+CE.
(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí)(BD<CE),其余條件不變,問BD與DE、CE的關(guān)系如何?請(qǐng)予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.求證:△ABD≌△CAF;
(2)如圖2,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)公民節(jié)水意識(shí),合理利用水資源,某市采用“階梯收費(fèi)”,標(biāo)準(zhǔn)如下表:
用水量 | 單價(jià) |
不超過(guò)6m3 的部分 | 2元/ m3 |
超過(guò)6m3不超過(guò)10m3的部分 | 4元/m3 |
超出10m3的部分 | 8元/m3 |
譬如:某用戶2月份用水9m3,則應(yīng)繳水費(fèi):2×6+4×(9-6)=24(元)
(1)某用戶3月用水15 m3應(yīng)繳水費(fèi)多少元?
(2) 已知某用戶4月份繳水費(fèi)20元,求該用戶4月份的用水量;
(3) 如果該用戶5、6月份共用水20m3 (6月份用水量超過(guò)5月份用水量),共交水費(fèi)64元,則該戶居民5、6月份各用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算結(jié)果正確的是( 。
A.6x6÷2x3=3x2
B.x2+x2=x4
C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2
D.(﹣3xy2)3=﹣9x3y6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過(guò)點(diǎn)A(1,4),對(duì)稱軸是直線x=﹣,線段AD平行于x軸,交拋物線于點(diǎn)D.在y軸上取一點(diǎn)C(0,2),直線AC交拋物線于點(diǎn)B,連結(jié)OA,OB,OD,BD.
(1)求該二次函數(shù)的解析式;
(2)求點(diǎn)B坐標(biāo)和坐標(biāo)平面內(nèi)使△EOD∽△AOB的點(diǎn)E的坐標(biāo);
(3)設(shè)點(diǎn)F是BD的中點(diǎn),點(diǎn)P是線段DO上的動(dòng)點(diǎn),問PD為何值時(shí),將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com