【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為(
A.
B.3
C.2
D.1

【答案】D
【解析】解:∵△A′DE△ADE翻折而成, ∴AE=A′E,
∵A′為CE的中點,
∴AE=A′E= CE,
∴AE= AC, = ,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∴△ADE∽△ABC,
= = , = ,
解得DE=1.
故選D.
【考點精析】關(guān)于本題考查的翻折變換(折疊問題),需要了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖∠1=∠2,∠3=∠4,∠5=∠6,∠160°,∠720°

1)試說明ACBD

2)求∠3及∠5的度數(shù)

3)求四邊形ABCD各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠B的平分線BE與AD交于點E,∠BED的平分線EF與DC交于點F,若AB=9,DF=2FC,則BC= . (結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三位數(shù),如果把它的個位數(shù)字與百位數(shù)字交換位置,那么所得的新數(shù)比原數(shù)小99,且各位數(shù)字之和為14,十位數(shù)字是個位數(shù)字與百位數(shù)字之和.求這個三位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABCAB的垂直平分線,分別交AB、BCD、E。AE平分BAC. 設(shè)B = x(單位:度),C = y(單位:度).

(1)求y隨x變化的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)請討論當(dāng)ABC為等腰三角形時,B為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解江城中學(xué)學(xué)生的身高情況,隨機對該校男生、女生的身高進行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如下所示的統(tǒng)計表和如圖所示的統(tǒng)計圖.

組別

身高(cm)

A

x<150

B

150≤x<155

C

155≤x<160

D

160≤x<165

E

x≥165

根據(jù)圖表中提供的信息,回答下列問題:

(1)女生身高在B組的有________人;

(2)在樣本中,身高在150≤x<155之間的共有________人,身高人數(shù)最多的在________組(填組別序號);

(3)已知該校共有男生500人,女生480人,請估計身高在155≤x<165之間的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1: (即tan∠DEM=1: ),且D,M,E,C,N,B,A在同一平面內(nèi),E,C,N在同一條直線上,求條幅的長度(結(jié)果精確到1米)(參考數(shù)據(jù): ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB= BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE= BC,成立的個數(shù)有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A′B′C′ABC 經(jīng)過平移得到的,ABC 中任意一點 Px1,y1)平移后的對應(yīng)點為 P′x1+6y15).

1)請寫出三角形 ABC 平移的過程;

2)分別寫出點 A′,B′C′的坐標;

3)畫出平移后的圖形.

查看答案和解析>>

同步練習(xí)冊答案