如圖,已知△ABC的面積為3,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA長(zhǎng)度得到△EFA.
(1)求四邊形CEFB的面積;
(2)試判斷AF與BE的位置關(guān)系,并說(shuō)明理由;
(3)若∠BEC=15°,求AC的長(zhǎng).

解:(1)由平移的性質(zhì)得
AF∥BC,且AF=BC,△EFA≌△ABC
∴四邊形AFBC為平行四邊形
S△EFA=S△BAF=S△ABC=3
∴四邊形EFBC的面積為9;

(2)BE⊥AF
證明:由(1)知四邊形AFBC為平行四邊形
∴BF∥AC,且BF=AC
又∵AE=CA
∴四邊形EFBA為平行四邊形又已知AB=AC
∴AB=AE
∴平行四邊形EFBA為菱形
∴BE⊥AF;

(3)如上圖,作BD⊥AC于D
∵∠BEC=15°,AE=AB
∴∠EBA=∠BEC=15°
∴∠BAC=2∠BEC=30°
∴在Rt△BAD中,AB=2BD
設(shè)BD=x,則AC=AB=2x
∵S△ABC=3,且S△ABC=AC•BD=•2x•x=x2
∴x2=3
∵x為正數(shù)
∴x=
∴AC=2
分析:(1)根據(jù)平移的性質(zhì)及平行四邊形的性質(zhì)可得到S△EFA=S△BAF=S△ABC,從而便可得到四邊形CEFB的面積;
(2)由已知可證得平行四邊形EFBA為菱形,根據(jù)菱形的對(duì)角線互相垂直平分可得到AF與BE的位置關(guān)系為垂直;
(3)作BD⊥AC于D,結(jié)合三角形的面積求解.
點(diǎn)評(píng):此題主要考查了全等三角形的判定,平移的性質(zhì),菱形的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用及推理計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4
;
在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3

在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長(zhǎng)度,得到△EFA.
(1)判斷AF與BE的位置關(guān)系,并說(shuō)明理由;
(2)若∠BEC=15°,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請(qǐng)直接寫(xiě)出點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請(qǐng)畫(huà)出△A1B1C1和△A2B2C1,并寫(xiě)出一個(gè)點(diǎn)A2的坐標(biāo).(只畫(huà)一個(gè)△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個(gè)三角形,使它與△ABC關(guān)于y軸對(duì)稱;
(2)寫(xiě)出(1)中所作的三角形的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案