【題目】如圖,在ABC中,AB=15,BC=14,AC=13,求ABC的面積. 某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路,完成解答過程.

(1)ADBCD,設(shè)BD=x,用含x的代數(shù)式表示CD,則CD=________;

(2)請根據(jù)勾股定理,利用AD作為橋梁建立方程,并求出x的值;

(3)利用勾股定理求出AD的長,再計(jì)算三角形的面積.

【答案】(1)14﹣x;(2)9;(3)84

【解析】試題分析:(1)已知BC=14,設(shè)BD=x,則CD=BC-BD=14-x;(2) RtABD 中,根據(jù)勾股定理求得AD RtACD 中,根據(jù)勾股定理求得AD,代入數(shù)據(jù)列出方程,解方程即可;(3)在(2)的基礎(chǔ)上求得AD的長,再利用三角形的面積公式求解即可.

試題解析:

(1)CD=(14-x)

(2) AD BC 邊上的高,

∴△ABD ACD 都是直角三角形.

RtABD 中,根據(jù)勾股定理,AD=AB-BD=15-x

RtACD 中,根據(jù)勾股定理,得AD=AC-CD=13-(14-x

15-x=13-(14-x

解得:x=9,BD=9.

(3)AD=15-9=225-81=144,AD=12

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個(gè).已知購買2個(gè)籃球和3個(gè)足球共需要380元;購買4個(gè)籃球和5個(gè)足球共需要700元.

(1)求購買一個(gè)籃球、一個(gè)足球各需多少元;

(2)若體育老師帶了8000元去購買這種籃球與足球共100個(gè).由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價(jià),那么他最多能購買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠A=∠D,∠EGC=∠FHB

(1)求證:ABCD

(2)求證:∠E=∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,點(diǎn)OAC邊上的一個(gè)動點(diǎn)過點(diǎn)O作直線MNBC,設(shè)MNBCA的外角平分線CF于點(diǎn)FACB內(nèi)角平分線CEE

1求證:EO=FO;

2當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;

3AC邊上存在點(diǎn)O,使四邊形AECF是正方形猜想ABC的形狀并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是( )

A. 如果,則

B. 如果|a|=|b|,那么a=b

C. 兩個(gè)銳角的和是鈍角

D. 如果一點(diǎn)到線段兩端的距離相等,那么這點(diǎn)是這條線段的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結(jié)論的個(gè)數(shù)是( 。

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把帶有指針的圓形轉(zhuǎn)盤A、B分別分成4等份、3等份的扇形區(qū)域,并在每一個(gè)小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示).小明、小樂兩個(gè)人玩轉(zhuǎn)盤游戲,游戲規(guī)則是:同時(shí)轉(zhuǎn)動兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),若指針?biāo)竷蓞^(qū)域的數(shù)字之積為3的倍數(shù),則小明勝;否則,小樂勝.(若有指針落在分割線上,則無效,需重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)試用列表或畫樹狀圖的方法,求小明獲勝的概率;
(2)請問這個(gè)游戲規(guī)則對小明、小樂雙方公平嗎?做出判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°AC平分∠BAD,CEABCFAD.試說明:

1CBE≌△CDF;

2AB+DF=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動點(diǎn)P在拋物線上.

(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案