【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)根據(jù)角平分線的性質(zhì)可得到CE=CF,根據(jù)余角的性質(zhì)可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,從而利用AAS即可判定△CBE≌△CDF.
(2)已知EC=CF,AC=AC,則根據(jù)HL判定△ACE≌△ACF得AE=AF,最后證得AB+DF=AF即可.
試題解析:證明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD
∴CE=CF
∵∠ABC+∠D=180°,∠ABC+∠EBC=180°
∴∠EBC=∠D
在△CBE與△CDF中,
,
∴△CBE≌△CDF;
(2)在Rt△ACE與Rt△ACF中,
∴△ACE≌△ACF
∴AE=AF
∴AB+DF=AB+BE=AE=AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“富春包子”是揚(yáng)州特色早點(diǎn),富春茶社為了了解顧客對(duì)各種早點(diǎn)的喜愛情況,設(shè)計(jì)了如右圖的調(diào)查問卷,對(duì)顧客進(jìn)行了抽樣調(diào)查.根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解決下列問題:
(1)條形統(tǒng)計(jì)圖中“湯包”的人數(shù)是 ,扇形統(tǒng)計(jì)圖中“蟹黃包”部分的圓心角為 °;
(2)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)富春茶社1000名顧客中喜歡“湯包”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路,完成解答過程.
(1)作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD,則CD=________;
(2)請(qǐng)根據(jù)勾股定理,利用AD作為“橋梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的長(zhǎng),再計(jì)算三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做投擲骰子(質(zhì)地均勻的正方體)試驗(yàn),她們共做了60次試驗(yàn),試驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 7 | 9 | 6 | 8 | 20 | 10 |
(1)計(jì)算“3點(diǎn)朝上”的頻率和“5點(diǎn)朝上”的頻率.
(2)小穎說:“根據(jù)上述試驗(yàn),一次試驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是100次”.小穎和小紅的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為5的等腰直角三角形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、 ;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于三個(gè)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在y軸的正半軸上,且=240.
(1)求點(diǎn)B坐標(biāo);
(2)若點(diǎn)P從B出發(fā)沿y軸負(fù)半軸方向運(yùn)動(dòng),速度每秒2個(gè)單位,運(yùn)動(dòng)時(shí)間t秒,△AOP的面積為S,求S與t的關(guān)系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在線段AB的垂直平分線上是否存在點(diǎn)Q,使得△AOQ的面積與△BPQ的面積相等?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰Rt△ABC中,∠BAC=90°.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為腰作等腰Rt△ADE,∠DAE=90°.連接CE.
(1)如圖,求證:△ACE≌△ABD;
(2)點(diǎn)D運(yùn)動(dòng)時(shí),∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;
(3)若AC=,當(dāng)CD=1時(shí),請(qǐng)求出DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com