【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點P(1,b).
(1)求b,m的值;
(2)垂直于x軸的直線與直線l1,l2,分別交于點C,D,垂足為點E,設(shè)點E的坐標為(a,0)若線段CD長為2,求a的值.
【答案】(1)b=3,m=1;(2)或
【解析】
(1)由點P(1,b)在直線l1上,利用一次函數(shù)圖象上點的坐標特征,即可求出b值,再將點P的坐標代入直線l2中,即可求出m值;
(2)由點C、D的橫坐標,即可得出點C、D的縱坐標,結(jié)合CD=2即可得出關(guān)于a的含絕對值符號的一元一次方程,解之即可得出結(jié)論.
解:(1)∵點P(1,b)在直線l1:y=2x+1上,
∴b=2×1+1=3;
∵點P(1,3)在直線l2:y=mx+4上,
∴3=m+4,
∴m=.
(2)當x=a時,yC=2a+1, yD=4a.
∵CD=2,
∴|2a+1(4a)|=2,
解得:a=或a=.
∴a的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】先仔細閱讀材料,再嘗試解決問題:我們在求代數(shù)式的最大或最小值時,通過利用公式對式子作如下變形:
,
因為,
所以,
因此有最小值2,
所以,當時,,的最小值為2.
同理,可以求出的最大值為7.
通過上面閱讀,解決下列問題:
(1)填空:代數(shù)式的最小值為______________;代數(shù)式的最大值為______________;
(2)求代數(shù)式的最大或最小值,并寫出對應(yīng)的的取值;
(3)求代數(shù)式的最大或最小值,并寫出對應(yīng)的、的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中.
(1)若把△ABC向上平移2個單位,再向左平移1個單位得到△A1B1C1,畫出△A1B1C1,并寫出點A1,B1,C1的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2hx+h,當自變量x的取值在﹣1≤x≤1的范圍中時,函數(shù)有最小值n,則n的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距_____千米.
(2)走了一段路后,自行車發(fā)生故障進行修理,所用的時間是____小時.
(3)B出發(fā)后_____小時與A相遇.
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式.(寫出計算過程)
(5)請通過計算說明:若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,何時與A相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對稱軸是直線;③足球被踢出時落地;④足球被踢出時,距離地面的高度是.
其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)計劃購買這兩種商品共50件,且投入的經(jīng)費不超過3200元,那么最多購買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,AC=BC,點D是線段AB上一動點,∠EDF繞點D旋轉(zhuǎn),在旋轉(zhuǎn)過程中始終保持∠A=∠EDF,射線DE與邊AC交于點M,射線DE與邊BC交于點N,連接MN.
(1)找出圖中的一對相似三角形,并證明你的結(jié)論;
(2)如圖②,在上述條件下,當點D運動到AB的中點時,求證:在∠EDF繞點D旋轉(zhuǎn)過程中,點D到線段MN的距離為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1=ax+b與反比例函數(shù)y2=交于A,B兩點,與x軸交于點C,點A的縱坐標為6,點B的坐標為(-3,-2).
(1)求直線和反比例函數(shù)的解析式;
(2)求點C的坐標,并結(jié)合圖象直接寫出y1<0時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com