【題目】如圖,面積為24的正方形ABCD中,有一個(gè)小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF= ,則小正方形的周長(zhǎng)為( )
A.
B.
C.
D.
【答案】C
【解析】解:∵四邊形ABCD是正方形,面積為24,∴BC=CD=2 ,∠B=∠C=90°,
∵四邊形EFGH是正方形,
∴∠EFG=90°,
∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,
∴∠BEF=∠DFC,∵∠EBF=∠C=90°,
∴△BEF∽△CFD,
∴ ,∵BF= ,CF= ,DF= = ,∴ = ,∴EF= ,∴正方形EFGH的周長(zhǎng)為 .
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠B=∠D.說(shuō)明AB∥CD的理由.
補(bǔ)全下面的說(shuō)理過(guò)程,并在括號(hào)內(nèi)填上適當(dāng)?shù)睦碛?/span>
解:∵∠1+∠2=180°(已知)
∠2=∠AHB( )
∴ (等量代換)
∴DE∥BF( )
∴∠D=∠ ( )
∵∠ =∠B(等量代換)
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,B,C兩點(diǎn)把線段AD分成4:5:7的三部分,E是線段AD的中點(diǎn),CD=14厘米.
(1)求EC的長(zhǎng).
(2)求AB:BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C處60 米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈ ,計(jì)算結(jié)果用根號(hào)表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.a2+a3=a5
B.(﹣2a2)3÷( )2=﹣16a4
C.3a﹣1=
D.(2 a2﹣ a)2÷3a2=4a2﹣4a+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是由若干個(gè)棱長(zhǎng)為1cm的完全相同的小正方體組成的一個(gè)幾何體.
(1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖;
(2)在露出的表面上涂上顏色(不含底面),則涂上顏色部分的總面積為 cm2.
(3)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的三視圖不變,那么最多可以再添加______個(gè)小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項(xiàng)得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1.
其中正確的個(gè)數(shù)有( )
A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:“以繩測(cè)井,若將繩三折測(cè)之,繩多4尺,若將繩四折測(cè)之,繩多1尺,繩長(zhǎng)井深各幾何?”
譯文:“用繩子測(cè)水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問(wèn)繩長(zhǎng)、井深各是多少尺?”
設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com